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1. Introduction 

Addressing short and real-time demand response (DR) in smart grid requires advanced 
energy resources models and optimization algorithms capable of achieving satisfactory solutions 
in reasonable execution time. The energy resource models handling short and real-time DR need 
to consider an accurate representation of the smart grid components, which include load 
models (e.g., electric water heater, heat pumps), distributed generation, and energy storage 
systems such as electric vehicles and energy storage systems. Some of the involved smart grid 
components are uncontrollable generation devices, e.g., small wind energy generation and solar 
photovoltaics facilities installed in homes, buildings and commercial or industrial compounds. 
Indeed, the output generation of wind generation and solar photovoltaics is not dependent on 
a human control action but instead on the weather conditions and nature events. These 
resources represent a source of uncertainty for the smart grid operation that must be 
considered. In addition, it is well understood that new loads such as electric vehicles (EVs) will 
add an additional source of uncertainty that cannot be deemed insignificant. DR can play a 
significant role to tackle and mitigate variable generation and uncertainty as it can be activated 
whenever it is not possible or too expensive to supply additional load demand or disconnect 
renewable generation. Being able to rapidly increase or decrease the demand and generation 
(i.e., flexibility) is a desired feature in the new paradigm of the smart grids. 

This report presents an overview and context of DR in smart grid operation in section 2. In 
Section 3 the resources and components modelling of smart grid. This report discusses a 
summary of smart grid (SG) optimization models in short and real-time, including uncertainty 
modelling of smart grid components, namely DR, while highlighting the contributions of the 
DREAM-GO project in what concerns the development of new models. In section 4 optimization 
algorithms for SG optimization are discussed. Classification of the main works (developed by the 
DREAM-GO partners and other authors), e.g., stochastic programming and metaheuristics that 
can deliver solutions that address and enable short-term and real-time DR in SG operation. 
DREAM-GO team contributions to this field of optimization are also discussed in this section. 
Finally, section 5 drawn the main conclusions of this report.  
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2. Overview and context of demand response in smart grid 
operation 

In the new paradigm of Smart Grid (SG) and electricity markets there are a diversity of 
players, such as Distribution System Operator (DSO), Transmission System Operator (TSO)1, 
market operator, market regulator, aggregators and retailers [1], [2].  Figure 1 shows the smart 
grid operation players, namely interactions among the several players within the SG 
environment. In this context, traditional consumers can also act as prosumers, i.e., both 
consumers and producers. In this market arena, several aggregators and retailers can operate 
in the same or distinct areas or exclusive parts of the low voltage grid. It can also be possible 
that a larger part of the electricity network, like a medium voltage grid, could be independently 
operated by an aggregator in the future. Despite the worldwide blooming of efforts, the 
associated complexity of the SG operation problem at every scale along with the prosumers 
behavior raises the question of whether new methods will be able to address reliable and 
efficient response [3]. 

 

 
Figure 1. Smart grid operation players and interactions [4] 

During the last decades, new visions and approaches have been proposed to deal with the 
increment of renewable energy sources [5]. In the scope of SG solutions, buildings and other 
end-users could purchase and sell the generated energy locally [6]. Consequently, energy 
management systems, smart metering and adequate demand response (DR) are necessary to 
deal with varying renewable generation and ultimately achieving an economic improvement 
through the automation technologies and network communications [7].  

On the other hand, SG will allow optimizing the supply of energy to households. The 
development of the different technologies that make up the Internet of Things and the adoption 
of laws aimed at improving energy efficiency, have contributed to the development of smart 
energy distribution [8]. Although, at present only 30%-40% of the population lives in cities, 
population is growing rapidly in developing countries and as a result, urban areas will expand 

                                                           
1 The TSO is also known as Independent System Operator (ISO) in United States. 
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and increase in population. The implementation of smart grids is part of the concept of smart 
cities; it will help solve many of the problems that cities face. In particular, key contributors to 
solve this problem are: 

1) automated fault detection: Automated fault detection in power lines will make power supply 
more reliable and will reduce the duration of power outages. These intelligent networks locate 
and detect faults automatically and within seconds. In this way, the majority of consumers can 
continue being supplied with electricity, since supply to the faulty line is cut off automatically. 
Knowledge of the damaged area will enable technical crews to respond more quickly to major 
and minor faults. This will also save transformers from unnecessary damage. 

2) smart meters: The introduction of smart metering will help solve many of the current 
problems, such as electricity theft, faulty transmission and distribution lines and errors in 
accounting. At present, in such circumstances, the supply of electricity to consumers is stopped 
automatically, in order to clarify the circumstances. According to statistics, once old meters are 
replaced with smart meters, the number of electrical overloads and crashes due to illegal 
connections to network substations will reduce significantly. At some local networks, the 
implementation of smart meters caused a fivefold decrease in the load on the grid and 
transformer substations. 

3) demand response: Demand response prosumers’ engagement into this dynamic scenario by 
means of their adapted DR would change the performance of the whole system. The use of 
Distributed Energy Renewable (DER) sources combined with IT are drivers of major changes 
happening today [9] [10]. 

 

 

Figure 2. Predicted penetration of smart meters by region [11] 

 

This is why many countries are beginning to invest in the development of alternative energy. 
Also, in the construction of new types of electricity networks; smart grids, and the installation 
of smart meters. Figure 2 compares the smart meters’ penetration rate in the different regions 
of the world up to 2022. According to forecasts [12], sales on the smart meter market will reach 
165.5 million units and revenues will be between $5.3 billion to $22.18 billion by 2020, with 
more than 80% of meters being installed in private households. Differences in the estimates are 
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due to the variety of methods used for their calculation. However, they do give a general idea 
of the smart meter market being an area for future investment. 

Smart metering implementation is seen as a very relevant step towards the massive layout 
of demand response programs [13]. Smart meters will allow the following according to [13]:  

1) Bi-directional communication between the consumer and its supplier, which will provide a 
simple way of structuring programs and gain consumer’s awareness;  

2) Data storage that enables the analysis of consumption profiles of the consumers (using data 
mining), allowing a more comprehensive view about the consumer’s needs;  

3) Energy metering concerning different time periods which will enable the adoption of time-
of-use programs;  

4) Facilitate the consumer’s interface with the energy activities, for example, by providing 
analysis between dynamic pricing programs and single tariff programs.  In this way, smart 
metering will provide several advantages regarding the presentation of data, namely, in 
what concerns demand response events and dynamic pricing. 

The following DR programs are briefly described according to OpenADR [14]–[16]: 

1) Critical Peak Pricing – programs that use time distinct tariffs to influence the consumer to 
reduce its consumption during peak demand periods; 

2) Capacity Bidding Program – programs that allow consumers to bid in energy markets, 
similar to how suppliers participate, specifying an amount of reduction, at a given time; 

3) Direct Load Control – programs where the consumer’s loads are controlled directly by the 
program organizer, without any influence from their owner; 

4) Ancillary Services Program – these programs provide monetary incentives to consumers, in 
exchange for load reduction during moments where the network is at risk; 

5) Electric Vehicle DR Program – has the same principle as CPP, however, applied to the 
charging of EVs, i.e., the price of charging EVs is time differentiated; 

6) Distributed Energy Resources DR Program – related with the integration of distributed 
energy resources into a smart grid. 

Figure 3 shows the temporary concepts involved with demand response application. The 
envisaged concepts are notification, deployment, which involves the ramp period and the 
sustained response after reduction deadline is fulfilled. Next, the release stage, after which 
there is a recovery period and resumes to normal status [13]. The deployment and the recovery 
period are known as the demand response event. 

 
Figure 3. Periods involved in a demand response event [17]. 
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2.1. DREAM-GO vision 
The overall DREAM-GO vision to enable effective demand response is illustrated in Figure 4.  

The involved players in this vision are briefly described in this section. This vision relies on the 
backbone of the smart grid infrastructure, namely advanced smart metering, communications; 
as well as adequate optimization models and algorithms. The optimization related to this vision 
is discussed in subsequent sections of this report, namely 2.2 and 2.3. In DREAM-GO ontologies 
are envisaged to enabled system interoperability in communications between the involved 
players and energy resources. In fact some work has already been published by the team in [18].  

 
Figure 4. DREAM-GO vision: enabling effective demand response 

The aggregator entity enables the intelligent management of the energy resources and 
consumers as a single entity. Aggregator interfaces with those energy resources throughout an 
electric connection (distribution grid) and with larger producers and the electricity market via a 
larger grid (known as the transmission grid). The involved energy resources are distributed 
generation (DG) such as renewables or thermal units, EVs, energy storage systems and DR 
programs. DR programs are considered an energy resource in this vision since they allow load 
reduction, load increase or load shifting, thus allowing dynamic changes of the energy load 
profile. DREAM-GO advocates that energy resource management is an essential tool to allow 
the energy aggregator to effectively deal with the involved energy resources, DR programs, 
market transactions, bilateral contracts with energy suppliers and larger producers. The energy 
resource management can have distinct phases from day-ahead to real-time [19][20]. The 
success of the DREAM-GO vision relies on adequate optimization models and algorithms to 
enable effective DR application, which is further discussed in subsequent sections. Another 
important and complementary player of the smart grid and this vision is the consumer (or 
prosumer). As stressed before, smarter metering is key to enable efficient control and 
monitoring on the consumer side. Consumer management allows to adequately control energy 
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devices namely throughout efficient home energy management systems (HEMS) to enable 
effective consumption scheduling and adequate DR implementation. 

2.2. Aggregator contribution for effective demand response  
Several DR program schemes have been proposed in the literature, representing the DR 

scheduling from the viewpoint of the energy aggregators2, e.g., [21]–[38]. Compared to the DR 
setups that can be implemented by the Transmission System Operators (TSO) and the 
distribution companies, this problem has been less explored from this perspective. References 
[21], [22] have developed a Direct Load Control (DLC) program to manage the residential loads. 
These plans are based on an agreement between the electricity aggregators and the customers 
to control the operation and the consumption of specific household appliances during peak 
demand periods and critical situations.  

Alternatively, to the DLC programs, the Incentive-based and price-based DR programs are 
implemented, which are more acceptable to the customers and the aggregators in liberalized 
markets. These programs introduce flexibility for retail customers on a voluntary basis [38]. The 
customers adjust load profiles according to the varying price of electricity and the financial 
incentives [29]. In a price-based scheme, the aggregator offers time varying rates for the 
electricity to the end-users. Price-based DR programs are investigated in several models to show 
how the aggregators can benefit from them to manage the electricity consumption of the end-
users [23]–[29], [36]. For example, [27]–[29] have introduced the real-time pricing (RTP) 
approach to model the price-based DR to maximize the profit of the aggregator and to reduce 
the peak-to-average load ratio in smart grids. Ref. [26] proposed a model for setting the price 
variations, which can encourage the customers to shift their loads considering time-of-use (TOU) 
tariffs. The hybrid market structure is considered for the aggregators’ DR scheduling in 
references [24], [25]. A dual price scheme is used for the customers, where some customers see 
the real-time prices and the rest are offered with a flat regulated pricing scheme.  

 
Figure 5. Hierarchical structure for incentive-based DR as proposed in [39] 

The incentive-based DR programs that the aggregators could offer to their customers are 
formulated in references [31], [33]–[35], [37]–[39]. Figure 5 shows a hierarchical structure with 
aggregators as proposed in [39]. At the bottom level, the users modify their demand pattern 
according to the compensation broadcasted by their aggregators; at the intermediary level, the 
aggregators determine their compensation strategy in order to maximize their profit, 

                                                           
2 Retailers are included in this concept, however only load is aggregated. 
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considering the incentives DSO can provide. Finally, in the upper level the operator computes 
the reward per unit of cost reduction for each aggregator so as to minimize its operational cost 
[39]. Employing incentive-based DR programs stimulates the consumption with the rewards 
offered to the customers for demand reduction [40]. References [31], [37] have considered the 
uncertain behavior of customers in designing the DR programs. The DR scheme is considered as 
an energy source of the aggregators. Ref. [31] develops a DR scheme, where the aggregator is 
not involved in the technical aspects of the DR program and procures various DR agreements 
from aggregators or large consumers. Ref. [38] proposes a coupon incentive-based DR program 
to induce flexibility in the  retail customers on a voluntary basis. The program is designed for 
customers equipped with smart meters yet still paying a flat electricity rate. Ref. [36] introduces 
a particular business model for DR programs in electricity markets. A platform for DR exchange 
has been developed in the context of a pool-based market. In this model, the residential and 
industrial customers deal with multiple DR-involved players in the market. They submit the 
hourly DR capacity and price to the market to sell the DR as a public good. Electricity aggregators 
in liberalized retail markets, such as PJM and ERCOT, are widely employing diverse types of DR 
programs to increase their payoff in energy markets, capacity markets and ancillary service 
markets. Designing an appropriate DR scheme that guarantees their benefit in the market is an 
important issue for them.  

The retailers are load aggregators or electricity suppliers that connect the end-users to the 
wholesale market. They are always at the risk of buying electricity at prices higher than their 
selling prices. Therefore, it is essential for them to manage contracts with the supply side in the 
pool market and with the demand side in the retail market to ensure expected returns [41]. They 
can implement a combination of approaches to manage the financial risks. Well-designed DR 
programs reduce the consumption during the periods with high electricity prices. It also makes 
the demand bids more price elastic during the periods with higher prices or the periods with a 
higher risk for the market power experience. Another possible solution is using the DG units and 
the ESSs owned by the aggregators during the price spikes. Instead of buying the whole 
electricity demand from the wholesale market, they can serve part of the loads with their light 
physical assets at the distribution network.  

The aggregators determine the optimal bidding strategy for the day-ahead market in an 
uncertain environment. They make the optimal decisions based on uncertain and volatile 
locational marginal prices (LMP), uncertain supply offers and demand bids of other market 
agents and unpredictable energy consumption of their customers. In this situation, the 
stochastic programming is an appropriate tool for them to manage their financial risks.  

The financial risk management strategies of aggregators for short-term markets, compared 
with the generation companies, have been less observed in recent research publications. In [42], 
the aggregators determine the optimal portfolio to balance between the benefit and risk in day-
ahead and real-time market with or without the bilateral contracts with the supply side. The 
only way that the pure aggregators in this deterministic model employ the financial risks is by 
vertically integrating with the supply side. In [43] the aggregator respectively employs light 
physical assets and incentive-based DR programs to manage the financial risks and limit the 
potential for market power in day-ahead market. In [44], it has been demonstrated through 
numerical simulations that in the current market context, pure portfolios of contracts are 
incomplete risk management strategies compared to physical hedging.  

In [45], the aggregators procure a portfolio of demand-side and supply-side resources to 
trade off the profit against risks in serving loads. Spot market purchases, forward contracts, and 
DR programs in the form of interruptible contracts are collected in the aggregator’s portfolio. 
The demand-side management model introduced in [29] is designed to be employed by the 
aggregators. The proposed programs require continuous monitoring and control of electricity 
end-users over their consumption. These approaches theoretically promote the competition in 
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the wholesale and the retail markets. However, in practice; the end-users do not show interest 
in plans that require their continuous awareness about the consumption. 

Entities like system operators or market operators look to be the ideal candidates for 
implementing DR programs [46]. They run day-ahead markets, real-time markets and the 
electricity wholesale markets where the aggregators and generation companies participate to 
trade electricity. However, these entities are not usually well-equipped to deal with the 
individual end-users in most of the electricity markets. Therefore, the responsibility of 
implementing DR programs remains with the aggregator in the foreseeable future [46]. In [47], 
three schemes are proposed to foster economic DR in the Midwest ISO. In all these schemes, 
the aggregators in the form of load-serving entities (LSE) and curtailment service providers (CSP) 
play the main role. In [48], LSEs and CSPs submit DR bids to the market operator. The proposed 
model introduces an approach for the market/system operator to include the DR bids of 
electricity buyers in the wholesale market. It does not consider the relation between 
aggregators and the end-users.  The distribution system and the end-users should develop 
further to enable the implementation of DR programs [49]. Advanced metering infrastructure 
networks that additionally provide the two-way communication between the distribution 
system operators, aggregators and the end-users via smart meters promote the implementation 
of DR programs by aggregators in order to guarantee their return in the volatile market [49]. 

2.3. Consumer contribution for effective demand response 
Consumers are a crucial part involved in the demand response implementation. As stressed, 

a key component of SG optimization and DR application is HEMS. Over the last decade, domestic 
buildings by communications channels (that are commonly termed smart homes) are involved 
as active players [7] in electrical grids. These constitute the building blocks in smart grid, and 
have an important role in the optimization of electrical energy scheduling [50]. In this regard, 
HEM is necessary for achieving an economic improvement through automation technologies 
[51]. HEMS can be classified in centralized and decentralized models. The former involves an 
aggregator or retailer that is able to remotely control home energy devices (e.g., electric vehicle, 
storage system, heating devices, etc.) by establishing contractual conditions with the final user. 
In the decentralized models, the HEMS manages locally the energy devices of the home and may 
react to price signals or incentive schemes sent by the supplier. In what regards DR application, 
centralized models are believed to be more effective, because the decisions can take immediate 
action whereas in decentralized models rely on the expectation that the user may react the price 
signals or incentives [52]. However, decentralized models are less complex to implement than 
centralized ones. 

Figure 6 represents a schematic of the smart household with decentralized HEMS [7]. The 
electricity retail company sends the price and incentive data to the HEMS on a daily basis and 
receives the consumption data in real-time from smart meters. The historical data and price 
data are also provided to the HEMS. The ON/OFF status, charging, cycling, or mode switching of 
the appliances are controlled and monitored wirelessly through the HEMS. Customers’ 
preferences are a priority for HEMS, and the consumption scheduling should not deteriorate 
defined comfort levels. The built-in parameters of the appliances are stored in HEMS and the 
customer is allowed to update several settings of the HEMS before each scheduling. 
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Figure 6. Decentralized representation of a smart household with HEMS [7]. 

There are different strategies to optimize the scheduling of home energy. Several 
approaches used different statistical models to improve HEM problems. In particular, [6] models 
the controllable loads and the loads that depend on weather conditions using a Markovian 
approach. In [53], demand response program following classical methods has been applied 
automatically to the controllers to use and control the appliances under uncertainty of outdoor 
temperature and electricity price. In [54], three HEM methods have been solved applying an 
observable Markovian decision process to reduce the domestic energy costs in the time-varying 
electricity price market. In [55], authors have discussed about the necessities of using 
computational intelligence in the HEMSs. In [56], each smart home has been considered as an 
autonomous agent that can buy, sell, and store electricity. Furthermore, uncertainty is modeled 
through generating the random data and functions in [56]. In [57], HEM has been defined as an 
intelligent Multi-Agent System (MAS). Also, JADE is used to implement the proposed model of 
[57]. In [58], a MAS has been demonstrated in the distribution network scale, while agents 
consist of home agents and retailer agents. In  [58], the purpose of the authors was to minimize 
the payment cost of electricity. In [59], authors proposed a method to apply the local energy 
resources optimally through minimizing the loss of energy. The main purpose of [59] is to 
minimize the purchasing cost of electricity. In [60], HEM problem in connection with transactive 
energy nodes has been discussed. Moreover, co-simulation of smart homes and transactive 
energy market has been studied in [60]. 

HEMS optimization is not completed with the retailer and/or aggregators counterpart. Most 
of the models reported in the literature propose a single-objective problem to address the 
portfolio optimization problem of the profit-seeking retailers [38], [41], [61]–[63]. The retailers 
are usually defined as entities with no physical assets that sign the bilateral forward contracts 
with the generation companies to manage the financial risks in the market. Significant changes 
have been observed in the structure and the operation of the retailers that participate in the 
liberalized electricity markets. Some of them have vertically integrated with the generation 
companies or started to invest on generation and storage facilities. Furthermore, with the recent 
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developments in the smart metering infrastructure and the home energy management systems, 
DR programs can be effectively implemented for the electricity end-users to manage the 
financial risks [64].  

Electric vehicles are an important aspect of SG since they will constitute a significant portion 
the electric load demand. EVs contribution to DR can be valuable if adequate DR programs are 
in place. Currently, some aggregators are introducing a variety of schemes for the EVs based on 
special tariffs. However, it is fair to recognize that these schemes are based on discount rates 
and still very limited, not adequately adapted for the future smart grid. Specific DR programs 
have been developed in the literature, which include a few works executed by the DREAM-GO 
team. These programs include incentive-based programs – smart charging, V2G, trip shifting, 
trip reduced – and one optimal pricing DR model (price-based). Figure 7 represents a 
classification of the mentioned DR programs. 

The smart charging and V2G approaches are effective types of DR resources use in the 
context of EV management [65]. The EV charging can be effectively controlled while reducing 
operation costs and network problems, while still maintaining the comfort of the users. The 
drawback of V2G and smart charging is the high complexity and high capital costs of the 
infrastructure. Nevertheless, aggregators may convince users to shift from uncontrolled 
charging to smart charging by financial incentives and convenience of charging, e.g., with smart 
charging, the user could benefit from discounted flat tariffs. 
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Figure 7. Representation of the specific DR programs for EVs.  
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3. Resources and components modelling 

This section of the report presents smart grid resources and components used in 
optimization models developed by DREAM-GO team. Then, it leads to how uncertainty is 
modelled by the stochastic processes. Next, energy scheduling models are analyzed, namely 
those on the current literature and those developed by DREAM-GO, namely those that include 
modelling uncertainty of energy resources and components of the smart grid operation. 

3.1. Resources and components 
Several resources and components can be found in the smart grid operation context that are 

suitable for SG application models in the context of DR. Each of the resources has its intrinsic 
characteristics that need to be properly modelled. In fact, some parameters of these models are 
subject to random noise and uncertainty. For instance, the energy management problem 
involves several sources of uncertainty in the problem data, namely in the load demand, electric 
vehicles, wind and solar generation forecasts. Some inputs, outputs and parameters of the 
models are briefly described in this section, namely the DG (PV and wind), storage, electric water 
heater, electric vehicle and heat pump. 

Figure 8 shows the typical input parameters that are used in PV models [66]. Such inputs are 
used directly in DREAM-GO PV models both in the optimization or simulation models. When 
performing studies on short-term horizon (like 24 hours), irradiance and temperature is difficult 
to know accurately in advance and therefore constitute sources of uncertainty. However, to 
simplify the optimization models, the AC power output of the PV panel can be modeled as an 
uncertainty variable with the associated forecast error if historical data is available, thus, 
skipping the need to firstly forecast irradiance, temperature and wind speed and to apply the 
estimated PV model. 

 
Figure 8. PV model parameters (adapted from [66]) 

Different types of wind power generators have distinct power output curves and 
performance. Therefore, the models used to accurately describe the performance is also 
different. Figure 9 depicts an example of theoretical wind power output in function of steady 
wind speed  [67]. This model can be described by a set of equations, namely 0 before the Vc or 
cut-in speed (where the wind turbine starts to generate some power), a linearized or nonlinear 
equation between Vc and Vr, where U is the wind speed, A is the frontal area, C is the coefficient 
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of performance and p is the density of the air, and a constant value or decreasing linear equation 
between Vr and Vco (cut-out speed of the generator): 
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DREAM-GO uses these models to approximate wind power wind generators in optimization 
models with DR and in static situations. Associated uncertainty lies in the wind speed parameter 
which is directly associated with forecast error. For dynamic models refer to section 3.4. 

 
Figure 9. Wind power output in function of steady wind speed [67] 

Figure 10 shows the block diagram of an Electric Water Heater (EWH) load [7]. The built-in 
parameters are shown in the gray box and the inputs are the parameters that require updates 
before each load scheduling. Hot water consumption profile and the desired temperature range 
of hot water are the most important inputs. An average hourly hot water consumption profile 
can be estimated for each household [68]. Hot water usage can be predicted by historical data 
that has been provided from the flow meter or the hourly electricity consumption of an EWH. 
Average hourly consumption refers to the mean volume of the hot water consumed during the 
specified time interval [69]. Several studies on hot water consumption have developed 
forecasting methods to forecast the individual hot water usage profile [70]. Forecasting hot 
water usage pattern is useful for demand-side management. The bounds on temperature reflect 
individual needs of the users. They are considered as operational constraints in the scheduling 
process [71]. Customers can provide more flexibility in scheduling by increasing the temperature 
range of the EWHs. This behavior can decrease their energy costs [71]. The set point 
temperature can be adjusted according to the hourly price changes [70]. Considering a wide 
range of the comfortable temperature provides more flexibility for the EWH for DR 
implementation [70]. 
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Figure 10. Electric water heater mode [7] 

The presence of EVs poses an additional source of uncertainty in the smart grid operation 
because trips and energy demand of EVs depend on the users’ behavior, which is not easy to 
predict. The aggregator requires knowing the timing of the trips and the associated expected 
energy consumption, as well other parameters, such as battery size. This means that the drivers 
would need to notify the aggregator of their planned trips in advance, or eventually, machine 
learning algorithms could be used to forecast driving needs [72]. Figure 11 shows an EV model 
that define the EV device as a component of the smart grid. There are some built-in parameters 
within these loads, which do not require updating before each consumption scheduling. They 
are permanent characteristics of the EVs. Other inputs should be updated before each 
scheduling. Some intelligent algorithms may be used to estimate these inputs, for instance, the 
initial level of battery stored energy can be estimated based on the historical data of the EV 
owner. The estimated inputs are sources of uncertainty that must be handled by the stochastic 
processes. 

 
Figure 11. EV load model [7] 

The flexibility of heating systems has been analyzed in several works [73]. It is observed that 
there is a large potential for the application of DR schemes on control of those devices. Figure 
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12 shows the inputs that require a daily update are shown on the left, the built-in or Heat Pump 
(HP) loads and the houses’ characteristics are represented in the middle and the outputs are to 
the right. The permanent characteristics are input characteristics (which may be associated with 
uncertainty) are then used by models and algorithms to reach a decision (right part). 

 

 

Figure 12. Heat pump load model 

3.2. Uncertainty modelling 
SG operation faces several sources of uncertainty during the operation of active distribution 

networks, namely the forecast errors of EV fleet characteristics, hourly load demands and the 
generation profile of the renewable sources. The uncertainties associated with the EV fleet 
characteristics is caused by the random driving pattern of the EV drivers and their uncertain 
behavior [74]. They are considered as potential uncertainties [74]. The uncertainties can be 
taken into account in scheduling problems and modeled as stochastic scenario-based 
optimization model.  

In this form of problems, where a set of scenarios needs to be handled, the main issue is to 
generate a set of realizations for the random variable, i.e., uncertain variable. These scenarios 
should adequately represent the probabilistic characteristics of the data [43]. The initial set of 
scenarios is a large data set generated by the probabilistic sampling techniques. There are 
several techniques for sampling data based on known probabilistic distributions. The point 
estimate method, as a subcategory of probabilistic models, is a suitable tool for modeling of 
power system uncertainties [75]. Monte Carlo Simulation (MCS) technique can also be used for 
representing power system uncertainties. The MCS parameters are the probability distribution 
functions of the forecast errors [76]. 

In order to include the forecast error, an additional term which can be positive, or negative 
is added to the forecasted profile (xforecasted): 

,( ) ( ) ( ),                 , .s forecasted error sx t x t x t t s     (2) 

The error term (xerror,s) is a zero-mean noise with standard deviation σ [43], [77]. Scenarios are 
represented with xs The uncertainties of the forecast errors are modeled with the probability 
distribution functions, which are obtained from the historical data [43]. In this model, the 
forecast errors for the uncertain inputs are all represented by normal distribution functions. 

The scenario tree concept can clearly illustrate how the discrete outcome for each stochastic 
input can be combined to construct the larger set of scenarios. A scenario tree consists nodes 
that represent the states of the random variable at particular time points, branches to show 
different realizations of the variable and the root which shows the beginning point where the 
first stage decisions are made [43]. Figure 13 shows the scenario tree model for the proposed 
scenario-based stochastic programming model [43]. 𝑋௡ௌ refers to the nth random variable. 
Variables can have different natures. For instance, 𝑋ଵௌ may represent load demand and 𝑋ଶௌcan 
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denote market prices. The number of the nodes at the second stage is equal to the total number 
of scenarios. The occurrence probability of each scenario is equal to the product of the branches’ 
probabilities [43]. 

 
Figure 13. Scenario tree representation [78] 

 

Including all the generated scenarios in the optimization problem results in a large-scale 
optimization problem [43]. Generally, there should be a tradeoff between model accuracy and 
computation speed [74], [79]. In order to handle the computational tractability of the problem, 
the standard scenario reduction techniques developed in [80] is used. These scenario reduction 
algorithms exclude the scenarios with low probabilities and combine those that are close to each 
other in terms of statistic metrics [80]. They determine a scenario subset of the prescribed 
cardinality and probability which is closest to the initial distribution in terms of a probability 
metric [76]. The main purpose of scenario reduction is to reduce the size of the problem. The 
number of variables and equations are reduced after applying these algorithms. Consequently, 
the solutions can be found more efficiently, without losing the main statistical characteristics of 
the initial dataset [81]. However, the potential cost of applying these approaches is introducing 
imprecision in the final solution [79]. The reduction algorithms proposed in [80] consists of 
algorithms with different computational performance and accuracy, namely fast backward 
method, fast backward/forward method and fast backward/backward method.  The selection 
of the algorithms depends on the problem size and the expected solution accuracy [76], [80]. 
For instance, the best computational performance with the worst accuracy can be provided by 
the fast-backward method for large scenario trees. Furthermore, the forward method provides 
best accuracy and highest computational time. Thus, it is usually used where the size of the 
reduced subset is small [76]. 

3.3. Smart grid operation models considering uncertainty 
Advanced simulation tools and energy scheduling models are a key part of the paradigm of 

smart grid operation. The literature has a vast collection of proposals. DREAM-GO team has 
selected a portion of the vast literature that is related to the project main goals (see Table 1). 
Some of the works consider DR for short and real-time. However, the majority of the proposals 
still lack the consideration of full component uncertainty and/or DR in the models. Table 1 
summarizes the characteristics of the main works in terms of components/resources and in 
terms of uncertainty consideration, 13 not lead by DREAM-GO team and 8 including at least an 
author from the DREAM-GO partners. It is important to remark those recent works developed 
in the scope of DREAM-GO project have been published in major journals indexed in SCI. 
DREAM-GO’ partners have made joint efforts to publish significant contributions to the 
literature in several fronts of SG operation research. 
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As seen by Table 1 very few works attempt to consider most source of uncertainties in a joint 
scheduling model, as e.g. the models developed by DREAM-GO team [78], [82]. Moreover, it is 
difficult to identify works that incorporate V2G, DG, DR and ESS simultaneously as in [78], [82],  
[83] [84] both led by the DREAM-GO team. From a total of the reported works in this table not 
lead by DREAM-GO only 3 works incorporated at least 3 components/resources, namely [85], 
[86] and [87]. In addition, only 4 works not lead by the DREAM-GO team incorporating DR and 
uncertainty at the same time are reported, namely [88], [85], [86] and [87]. The works reported 
by DREAM-GO team include DR, however not all the models consider uncertainty. In this case 5 
works consider uncertainty. For example, the team proposes in [82] a two-stage stochastic 
model that addresses several sources of uncertainty, namely wind, photovoltaic (PV), EVs, 
demand and market price in a joint model (addressed as in 3.2). Jointly with Clemson University 
new model is proposed in [78], which adds network constraints, namely power lines capacity 
and voltage control to the original problem in [82]. The problem is solved using Benders 
decomposition scheme. The results of this work from DREAM-GO demonstrate that the very 
large-scale problem with uncertainty can be solved in its most complex form, dealing at the 
same time with the aggregator challenging number of resources and the DSO technical 
constraints as part of the equation. However, it is fair to recognize these models require large 
amounts of computational resources to be able to solve the stochastic model with an adequate 
number of scenarios (even if scenario reduction techniques are adopted). In fact, scenario 
reduction techniques decrease the accuracy of the uncertainty representation. Since smart grid 
operation is dealing with an increasing number of energy resources and consequently more 
components associated with uncertainty, it remains a major challenge to tackle these 
optimization models under uncertainty with adequate representation. A solution may lie in 
metaheuristics and decomposition techniques combined with uncertainty models and/or robust 
optimization models that deal with a range of uncertainty instead of probabilistic scenarios. A 
robust model proposed by DREAM-GO team is adopted in [89] which tackle market price and 
load demand uncertainty for aggregators that are new entrants to the market and have little 
knowledge have the behavior of the market and their customers. In [84], USAL proposes an 
energy resource management for domestic loads that considers uncertainty in the PV power for 
the day-ahead and real-time approach. The work considers EVs, DR as flexible loads and energy 
storage system units. Two different stochastic methods are compared and evaluated using a 
realistic case study. 

Table 1 – Summary of energy scheduling models: resources and uncertainty sources 

Ref. 
Resources/components present in the work 

Considered sources of uncertainty 
V2G DG DR ESS 

[72] No Yes No No Driving patterns and market bids 

[90] No Yes No Yes Only in wind and PV 

[88] No Yes Yes No Only in wind 

[91] No Yes No No Only in energy demand 

[92] No Yes No Yes Only in the fuel cell outages 

[85] No Yes Yes Yes Load, renewable generation and electricity price 

[93] Yes Yes No Yes Load, renewable generation, EV demand and price 

[75] No Yes No No Renewable generation, load and electricity price 

[86] No Yes Yes Yes Wind/PV, load demand and market price 

[87] No Yes Yes Yes Wind/PV only 
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Ref. 
Resources/components present in the work 

Considered sources of uncertainty 
V2G DG DR ESS 

[94] No Yes No No Wind, market bids and price rivals’ offers 

[95] No Yes No No Wind and market price 

[96] No Yes No Yes Intermittent source and market price 

[82]* Yes Yes Yes Yes Wind. PV, EVs, load demand and market price 

[7]* No No Yes Yes - 

[97]* No Yes Yes Yes Wind, PV, EVs, load demand 

[83]* Yes Yes Yes Yes - 

[2]* No Yes Yes No - 

[78]* Yes Yes Yes Yes Wind/PV, EVs, load demand and market price 

[89]* No Yes Yes No Market price and load demand via robust model 

[84]* Yes Yes Yes Yes PV power 

*Works developed in scope of DREAM-GO 

Table 2 classifies the works reported regarding its main purpose, namely technical, 
economic, and environmental aspects.  It can be seen that most of the works related to 
uncertainty deal with economic aspects. Technical aspects are often common and related to 
power losses and voltage control (when network constraints are considered) such as in [72] and 
[93]. Some of the works consider environmental, reliability and building dynamics aspects such 
as in [92] and [85]. [78], [83] developed in DREAM-GO includes both technical and economic 
aspects. However, [83] does not incorporate the resources’ uncertainty as formulated later by 
the DREAM-GO team in [78], despite not including environmental aspects as in [83]. 

Table 2 – Summary of energy scheduling models: technical and economic aspects 

Ref. 

Technical aspects 

Economic aspects Power 
losses 

Voltage 
control Other1 

[90] No No No The goal of the aggregator is to minimize purchases in spot market. 

[72] Yes Yes No Expected operational costs over the next 24 hours. 

[88] No No No Minimum production costs with cost of DR reserves. 

[91] No No No Maximize system utility. 

[92] No No Yes Financial aspects (costs) but also environmental and reliability. 

[85] No No Yes Maximize profits of microgrid considering building dynamics. 

[93] Yes Yes No Expected operation costs over the next 24 hours. 

[75] No No No Maximize expected profits over the next 24 hours. 

[86] No No No Minimize expected costs. 

[87]  No No No Maximize operation revenue. 
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Ref. 

Technical aspects 

Economic aspects Power 
losses 

Voltage 
control Other1 

[94] No No No Maximize profit over the scheduling horizon. 

[95]  No No No Maximize utility function in day-ahead and real-time markets. 

[96]  No No No Maximize profit in the day-ahead and balancing market. 

[82]* No No No Minimize expected operation costs. 

[7]* No No No Minimize household energy costs under DR programs  

[97]* No No No Maximize aggregator profit and EV user charging opportunity 

[83]* Yes Yes Yes Maximize aggregator profit 

[2]* No No No Minimize aggregator operation costs and suitable remuneration groups 

[78]* Yes Yes No Minimize operation costs considering market transactions 

[89]* No No No Maximize aggregator payoff considering price risk 

[84]* No No No Maximize domestic energy profit 

1 fault location, network restoration, island operation; *Works developed in scope of DREAM-GO 

Table 3 depicts a summary of SG optimization models concerning other important aspects 
related to the scope of DREAM-GO studies that the team finds important to analyze. Some 
important aspects not envisaged in previous tables but are briefly described. These models are 
used in SG context taking into account different purposes such as tackling environmental 
aspects, DG allocation, fault location, network restoration and island operation. [83] developed 
in DREAM-GO presents a multi-objective model that includes maximizing aggregator profits and 
minimizing CO2 emissions. 

Table 3 – Summary of other SG optimization models: identification of other aspects 

Ref. 

Other considered aspects 

Environmental
impact 

DG 
allocation DG capacity Reliability Fault location Network restoration Island operation 

[92] Yes No No Yes No No No 

[85] No No No No No No No 

[97]* Yes No No No No No No 

[98] No Yes Yes Yes No No No 

[99] Yes Yes Yes No No No No 

[100] No Yes Yes No No No No 

[101] No No No Yes No No No 

[102] No Yes Yes No No No No 

[103] Yes Yes Yes No No No No 
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Ref. 

Other considered aspects 

Environmental
impact 

DG 
allocation DG capacity Reliability Fault location Network restoration Island operation 

[104] No Yes Yes No No No Yes 

[105] No No No Yes No No No 

[106] No Yes Yes No No No No 

[107] No No No No Yes No Yes 

[108] No No No No Yes No No 

[109] No No No No No Yes No 

[110] No No No No No Yes No 

*Works developed in scope of DREAM-GO 

3.4. Advanced smart grid resources and component models 
This part focuses on several real implemented models of consumption and generation 

resources in a SG. All represented models are emulated by several laboratorial and commercial 
components, which are controlled and managed by a real-time digital simulator machine called 
OP5600 (www.opal-rt.com). Therefore, in this section at first, the details on OPAL-RT simulator 
will be presented, then, the real hardware components used for consumption and generation 
resources modeling in a SG will be demonstrated, and finally, performance results of the system 
will be illustrated. 

3.4.1. Real-Time simulator  
The real-time simulator machine (OP5600) is referred to a real-time digital simulator that is 

a powerful tool for rapid control prototyping and Hardware-In-the-Loop (HIL) applications. In 
fact, OP5600 is based on MATLAB/Simulink, somehow it enables the users to execute Simulink 
models in real-time. Additionally, the OP5600 is equipped with several Digital and Analog Input 
Output boards that are designed for HIL methodologies. In other words, by using these boards 
of OP5600, real hardware equipment can be controlled and managed via Simulink models, and 
also real data outside of simulation environments can be monitored in Simulink models. Figure 
14 illustrates that how a real hardware equipment can be controlled and monitored by the 
OP5600 and Simulink model.          

 
Figure 14. Real-Time simulator (OP5600) controlling process. 
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Generally, Simulink models embedded in OP5600 is developed in two subsections of 
computation and console subsections. The computation subsection contains of all 
computational elements and mathematical operations that will be executed in real-time on the 
OP5600. The console subsection includes all user interface blocks such as scopes, displays, 
constants, switches and other controller blocks used in a Simulink model. As Figure 14 shows, 
the console subsection is displayed on a host computer and allows interaction with the 
computation subsection executed on OP5600 via TCP/IP communication protocol.  Therefore, 
by this way, the users would be able to remotely control and monitor real hardware equipment 
using a MATLAB/Simulink model. Figure 15 represents the implemented consumption and 
generation resources modeling for a SG by using OP5600 as a main controller unit. This resource 
modeling is an improved version of the work presented in [111] and only the related information 
and the updated parts have been mentioned here, and more details are available on those 
references.  

 
Figure 15. Resource modeling for a SG in OP5600. 

In this model, 4 kVA and 30 kW loads are the two resources for modeling consumption 
profiles of small and medium consumer in a SG, and 7.5 kW PV array and 1.2 kW wind turbine 
emulator models the Distributed Renewable Energy Resources (DRERs) in a SG.       

3.4.2. Consumption and Generation Resources Modeling   
In this section the integration of implemented hardware resources in the OP5600 is 

presented. At first, we will focus on the consumption resource modeling, and then, DRERs 
resource modeling will be presented.  

Small Consumer Resource 

Small consumer is a three-phases 4 kVA variable load (shown on Figure 15), which enables 
the system to simulate the consumption profile of a small-scale consumer, such as a residential 
house, in a SG. This load, by default, was a manually controlled device somehow the operator 
should manually control a resistive gauge for increasing or decreasing the consumption. 
However, for integrating this load in the OP5600, an automatization idea has been implemented 
in order to be controlled and monitored by a Simulink model.  Figure 16 demonstrates the 
implemented automation equipment on the 4 kVA load in order to be controlled and monitored 
by OP5600.  
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Figure 16. Implemented components on 4 kVA load for automatization. 

As you can see in Figure 16, an Arduino (www.arduino.cc) equipped with an Ethernet shield 
enables is responsible to control the consumption of 4kVA load. In this way, Ethernet shield of 
Arduino enables the 4 kVA load to receive the desired power rate that sent from the OP5600 via 
TCP/IP protocol. Simultaneously, the real-time energy consumption of the load is measured by 
an energy meter installed on the load. Therefore, Arduino requests the measured data from the 
energy meter through Modbus RTU-RS485 protocol, and compare it with the desired power rate 
transmitted by OP5600. If the real-time consumption is smaller than the desired power rate, 
Arduino activate a 12V DC motor in clockwise direction, and therefore, it increases the 
consumption of 4 kVA load until the desired power rate. If the real-time consumption of 4 kVA 
load is greater than the desired power rate, Arduino activates the 12V DC motor in 
counterclockwise direction, therefore, the consumption will be decreased. By this way, OP5600 
not only would be able to control the consumption of 4 kVA load, but also it will be informed 
from the real-time consumption data of this resource. 

The developed MATLAB/Simulink model developed for the 4 kVA load and embedded on 
OP5600 is shown on Figure 17. 

 
Figure 17. MATLAB/Simulink model for controlling and monitoring 4 kVA load. 
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As Figure 17 shows, the TCP/IP configuration of the model has been configured first. Then, 
the desired power rate is set via a Constant block and is given to a MATLAB Function Block, which 
convert it to IEEE 754 standard. In the same time, the received data from 4 kVA load (real-time 
consumption), will be considered as an input of another MATLAB Function block, which converts 
the data from IEEE 754 to a normal decimal number. 

Medium Consumer Resource 

The medium consumer unit is related to a 30 kW resistive load (shown on Figure 15), which 
enables the system to model medium consumers of a SG, such as commercial or office buildings. 
This load has several switches in front, which enables the user to control its consumption 
through these switches. However, for controlling this load by OP5600, four relays have been 
installed. In fact, the relays were substituted with the manual switch, and they were connected 
to the digital output board of OP5600. Figure 18 shows the installed equipment on the 30 kW 
load, and Figure 19 illustrates the MATLAB/Simulink model for controlling this resource by 
OP5600. 

 
Figure 18. Implemented automation components for medium consumer resource modeling. 

 

 
Figure 19. MATLAB/Simulink model for controlling 30 kW load by OP5600. 

Based on Figure 19, at first, the desired power rate that OP600 tends to be consumed by 30 
kW load is defined as a constant in the model. Secondly, this power rate converts from watt to 
kilowatt and enters as an input to a MATLAB function block. The outputs of this block are 
connected to the last four channels of the digital output board. The MATLAB function block 
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activates the appropriate relay on the 30 kW load by regarding to the desired power rate that 
defined as a constant in the developed Simulink model.  

Wind Turbine Modeling 

In order to model a wind generator in a SG, a 1.2 kW wind turbine emulator (shown on Figure 
15) is a facility that allows the user to have wind turbine modeling. In this emulator, an inductive 
three-phase generator has been coupled with a three-phase asynchronous motor with variable 
speed. This motor simulates the blades of the wind turbine. By this way, the operator can 
simulate the wind speed by controlling the speed of the motor. 

For controlling this resource, one analog output channel of OP5600 was applied. This output 
channel has the output range of 0 to 10 V with the resolution of 0.01 V. Therefore, the wind 
speed variation should be converted to the voltage range of the analog output board in OP5600. 
The computations of this conversion have been done in Simulink environment. Figure 20 
demonstrates the controlling process of this unit. 

 
Figure 20. Controlling process of wind turbine emulator by OP5600. 

In the first step of this controlling method, wind speed data should be converted from km/h 
to m/s. In the second step, the wind speed in m/s should be converted to a reasonable value for 
the analog output range, which is 0 to 10 V. By this method, the amount of the voltage that 
analog output should present to the speed controller unit were achieved. In this system, if the 
wind speed is less than 2.3 m/s and more than 20.3 m/s, the wind turbine will be stopped due 
to economic and safety reasons. In the next step, the generated power is measured by the 
energy meters mounted on this unit, and in the final step, the measured data are transmitted 
to OP5600. All of these computational steps have been implemented in MATLAB/Simulink 
environment as Figure 21 shows.  

 
Figure 21. MATLAB/Simulink model for controlling and monitoring wind turbine emulator by OP5600. 

Two MATLAB function blocks have been placed on this model for converting the wind speed 
data to a reasonable value for the analog output board of OP5600. These two blocks are “Wind 
Speed to Power” and “Power to Voltage” blocks. In the first block, the proportion between the 
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generated energy and the wind speed data has been modeled. In “Power to Voltage” block, the 
results of an experimental test have been applied. In this test, the amount of the voltage that 
OP5600 should provide to the analog input terminal of the speed controller unit in order to 
increase the produced power for 50 W, was acquired. Therefore, by this controlling method, it 
would be possible to insert the wind speed values as an input and acquires the amounts of 
generated power of the wind turbine.  

PV Modeling 

In fact, the model presented for PV (shown on Figure 15) is real implemented PV system in 
GECAD Research center building, located in Porto, Portugal. The installed PV system is equipped 
with a grid-connected inverter, and has maximum generation capacity of 7.5 kW.  

In order to have a complete generation modeling in OP5600, MATLAB/Simulink model shown 
on Figure 22 has been developed in order to request the real-time generation data from PV 
inverter. 

 
Figure 22. MATLAB/Simulink model for PV system. 

As you can see in Figure 22, TCP/IP parameters have been configured first, and then MODBUS 
request data will be transmitted to the PV inverter by “Sending Block”. After that, the responses 
of the PV inverter, which is real-time PV generation data, will be received by “Receiving Block” 
of the Simulink model. 

3.4.3. Performance Results   
In this section, the proposed resources modeling will be executed during a short period in 

order to validate and evaluate the system performance. The main focus of this section is given 
to the moments that OP5600 transmits a desired power rate to the consumer models or to the 
wind turbine model. The PV system is not in the scope of this section, since the OP5600 have no 
control on that. 
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Therefore, in order to evaluate the system performance for consumer models, we run the 
MATLAB/Simulink model of consumers by OP5600 for a period of 600 seconds. The results of 
this simulation period are shown on Figure 23. These results are real-time data acquired in 
MATLAB/Simulink environment.  

 
Figure 23. Simulation results of consumers modeling by OP5600. 

In Figure 23, the desired power rate that OP5600 transmitted to the consumer resources 
(4kVA and 30 kW loads) are illustrated by yellow color, and the real-time consumption profile of 
4 kVA and 30 kW loads are illustrated by purple color. In this simulation, 12 V DC motor of 4 kVA 
load attempts to reach to the desired power rates and according to voltage variations of the 
utility grid, it tries to be static and equal to the desired power rates, which leads to send back 
various values to the target. These variations are more sensible on high power rates. Also, it is 
visible on Figure 23 that when OP6500 transmits the desired power rates, the both loads need 
some times to reach the desired value. 

Moreover, for testing the performance of the wind turbine emulator, we run the 
MATLAB/Simulink model of wind turbine by OP5600 for a period of 120 seconds. The results of 
this simulation period are shown on Figure 24 .  These results are real generation data acquired 
in real-time by MATLAB/Simulink. 

 
Figure 24. Simulation results of wind turbine modeling by OP5600. 

In this model, we insert 25 km/h as wind speed and input for the Simulink model, and as you 
can see in Figure 24, the real-time generation data regarding the wind turbine emulator is 
between 350 to 450 W, which is based on voltage variations of the utility grid. This amount of 
generation is the power that the wind turbine emulator actually injected to the utility grid. 
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4. Optimization algorithms for smart grid operation 

This section presents optimization algorithms that are being studied and adopted to solve 
the short-term and real-time DR problem in DREAM-GO project. The optimization algorithms 
include non-exact and exact methods, namely metaheuristics and mathematical optimization, 
respectively. Later, this section presents some works that have been classified according to the 
optimization algorithm used, objective function (e.g., if multi-objective or single-objective) and 
the DR program. 

4.1. Meta-Heuristics approaches 
The goal of combinatorial optimization is to find a finite mathematical object that maximizes 

or minimizes a specified objective function for the problem domain. The set of possible solutions 
for a single problem is called the search space. Development in the field of combinatorial 
optimization seeks the development of efficient techniques to find maximum and minimum 
values of a function with a high set of independent variables [112]. This function, usually called 
cost function or objective function, represents a quantitative measure of the "quality" of a 
certain complex system. The cost function depends on the exact detail level of the system. 

All methods known to determine the optimum solution to a wide variety of problems require 
a computational effort that grows exponentially, so that in practice the exact solution can only 
be carried out with a reduced number of parameters. 

Since this kind of NP-hard or NP-complete problems produce a variety of situations of 
practical interest, heuristic and metaheuristic methods have been developed to reduce the 
problem to N. Heuristics are, in many occasions, specific to the problem so there is no guarantee 
for the heuristic process to obtain a quasi-optimal solution for an NP-hard problem. 

The main strategy of the heuristic method is based on the key concept of "divide and 
conquer" and an iterative improvement. First, it is important to divide the problem into smaller 
problems of manageable size and then solve each one of them. Solutions of the sub-problems 
must be re-pooled. For this method to produce acceptable results, the division into sub-
problems must be disjoint and appropriate, so that the errors made in the fusion of the solutions 
do not question the benefits obtained in the application of methods more appropriate to the 
subproblems. 

This set of techniques, despite not assuring the resolution of the problem in an optimal way, 
include a set of heuristics and metaheuristics that reduce the search space in favor of reducing 
the computing time necessary to solve the problem that is usually of NP-hard type. 

The inherent prosumers’ behavior uncertainty, combined with the dynamic conditions of a 
partially centralized system, has led to the conclusion that the most effective way of tackling 
some SG problem might be using meta-heuristics. Counter to exhaustive optimization methods, 
meta-heuristics allow finding reliable sub-optimal solutions in reasonable times. Figure 25 
presents some popular heuristics and a wide classification of them. Then, Table 4 summarizes 
the advantage and disadvantages of some of the heuristics that have been used in SG related 
problems [114]. 
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Figure 25. Most popular metaheuristics [113] 

 

 

Table 4 – Used metaheuristics in SG operation: main characteristics  

Method Population Advantages Disadvantages 

Genetic 
Algorithm Yes 

Capable of solving problems with multiple 
solutions, easily comprehended and assimilated 
into existing model frameworks, as well as 
readily implemented via MATLAB toolbox 
interface; Low development complexity, 
tolerant with objective functions with chaotic 
attributes, and suited for topological and 
categorical variable optimization. 

Prone to prematurely convergence to local 
optimal and divergence, and inconsistent 
response time due to random 
implementation; More limited convergence 
speed than other stochastic methods, and 
complex approach of termination criterion 
determination. 

Differential 
Evolution 

Yes 
Few control parameters; Easy implementation; 
Very robust for real-value problems; Flexible for 
hybridization. 

Tend to converge to local optimality; the 
parameters have a huge impact in the quality 
of solutions. 

Particle 
Swarm 

Optimization 
Yes 

Fast implementation, rapid completion, low 
cost, high adaptability, and flexible for 
hybridization with other algorithms due to 
computational simplicity. 

Could not solve problems without 
coordinates system, and tend to converge to 
local optimality; Lack of solution 
diversification at convergent state. 
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Ant Colony Yes 
Compatible for concurrently solving multiple 
problems, simple in architecture, and superior in 
searching for local and global optimal solutions. 

Probabilistic nature of search algorithm 
associated with density of deposited 
pheromone, which could be prone to certain 
solution. 

Estimation of 
Distribution 
Algorithm 

Yes 
Provide an optimization practitioner with a 
series of probabilistic models that reveal a lot of 
information about the problem being solved; 
Almost no parameter tuning is required. 

The estimation of the joint density function is 
a tedious task; There are different categories 
depending on the degree of dependency that 
they take into account. 

Simulated 
annealing 

Yes/No 
Compatible with solving highly non-linear, 
complex, large-scale and highly constrained 
models, with highly fluctuating and stochastic 
data set. 

Difficult balance between solution precision 
and response time, and over-precision in 
parameter fine-tuning with significant impact 
on solution precision and fitness. 

Tabu Search No 

Enhances the performance of local search by 
relaxing its basic rule, namely by introducing 
prohibitions (henceforth the term tabu) to 
discourage the search from coming back to 
previously-visited solutions or solutions without 
no improvement. 

It can get stuck in local optimally if the size of 
the memory is not properly chosen. The 
stochastic search does not guarantee optimal 
solutions. 

GRASP No It is applicable to combinatorial optimization. 
Easy to implement. 

The initialization and construction phase 
affect the convergence of the algorithm. The 
greedy function should be designed 
according the problem and sometimes is 
difficult to device. 

Variable 
neighborhood 

search 
No 

Can solve discrete and continuous optimization 
problems. Avoid the stagnation of local search 
methods. VNS and its extensions are simple and 
require few, and sometimes no parameters. 

Requires incorporating user knowledge to 
improve the resolution process. 

 

4.1.1. Robust optimization in Particle Swarm Optimization 
The particle swarm algorithm has attracted the interest of researchers around the globe and 

has undergone many changes since its introduction in 1995 [115]. The initial ideas on particle 
swarms of Kennedy (a social psychologist) and Eberhart (an electrical engineer) were essentially 
aimed at producing computational intelligence by exploiting simple analogs of social interaction, 
rather than purely individual cognitive abilities. The particle swarm is a population-based 
stochastic algorithm for optimization which is based on social-psychological principles like flocks 
of birds or schools of fish. In PSO a number of particles is placed in the search space and each 
particle evaluates the objective function at its current location. Each particle keeps track of the 
coordinates associated with the best solution found it so far. This value is named "personal best" 
(pbest). The particle also has access to information on the best solution found in their vicinity 
called "global best" (gbest). The basic idea of PSO is to accelerate every particle in the direction 
for the local of pbest and gbest. The value of acceleration varies randomly during the research. 
While searching each particle uses the information from her best position in the past and the 
current best position among its neighbors. The movement is determined from the combination 
linear vectors with different weights.  

Figure 26 shows the flowchart of PSO for robust optimization proposed by DREAM-GO team 
to handle the uncertainty of energy resources in SG. It is important to note that the main factor 
of innovation presented in this model focuses on the consideration of the uncertainties 
regarding production from photovoltaic panels and wind turbines. This algorithm is based on 
robust optimization approach that focuses on finding robust solutions that represent the worst-
case scenario. After being performed the typical steps of PSO, for each particle the variables 
with uncertainty are disturbed by a set of scenarios generated by Monte Carlo Simulation (MCS). 
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For each particle, the variables with uncertainty (wind and photovoltaic), which in this case could 
correspond to the production forecast values, are disturbed by a prediction error value, creating 
several different scenarios for the PV and wind production. These scenarios are generated by 
using the MCS method, following a normal distribution and assuming the underlying forecast 
error [90]. Each perturbated solution is evaluated in the objective function and the solution that 
represent the worst case is chosen. This process is made for each particle of the initial population 
and the cycle will be repeated until a set number of iterations. 

 
 
 

 

Figure 26. Flowchart of the PSO for robust optimization 
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4.2. Mathematical approaches 
This section presents the main mathematical optimization models used to solve the short-

term and real-time DR problem in DREAM-GO project. The stochastic programming approach 
used to tackle optimization problems with uncertainty (which is the case, for instance, of SG 
problems considering the uncertainty of renewables) and a specific decomposition method, 
namely Benders’ decomposition, are presented respectively. 

4.2.1. Stochastic programming 
In mathematical optimization, stochastic programming is used to model optimization 

problems that involve uncertainty. Deterministic models are used when all the parameters of 
the problem are known in advance (minimize the material used in a package for a given object). 
Unfortunately, in many real-world problems, there are usually unknown parameters. If the 
parameters are known only within certain bounds and the probability distribution is not known, 
then robust optimization can be used. Stochastic programming takes advantage of the 
probability distribution, therefore, unknown data can be estimated. The aim is to maximize or 
minimize the decision-maker’s goal and satisfy most of the problem instances (scenarios). The 
stochastic models usually can be converted to Mixed Integer Linear Programming (MILP) and 
solved analytically as linear problems. A two-stage stochastic model comprehends two stages, a 
first stage decision that is affected by random realizations and a second stage that mitigates the 
bad effects that may be experienced by the first-stage decision. 

To measure the advantage of using stochastic programming, some metrics are 
implemented. The Expected value of Perfect Information (EVPI) represents the quantity that the 
decision maker would need to pay to obtain perfect information about the future. The Value of 
Stochastic Solution (VSS) represents the advantage of using stochastic programming over a 
deterministic one [116]. 

4.2.2. Benders’ decomposition 
Decomposition techniques are applied to problems in which it is possible to identify 

complicating binary variables. Nowadays, the decomposition techniques are frequently used in 
order to solve several problems with complex characteristics, namely in the fields of power 
systems, planning, network design, transportation, and military applications, to name a few 
[117]–[119]. An example of decomposition technique is Benders decomposition, proposed in 
1962 [120]. This method is adequate to solve MINLP problems, as well as large-scale problems 
with binary variables. The problem is usually divided into a master problem and one or more 
slave problems. The master problem is generally an integer or mixed integer problem while the 
sub-problems are linear or nonlinear. The master problem includes fewer technical constraints 
while the slave problem checks if the solution of the master satisfies all the technical constraints 
of the original formulation. An infeasibility cut will be added to the master problem when the 
slave problem is infeasible by means of a new constraint and objective function in the master. 
This will generate a new solution to be analysed by the slave problem again. Several iterations 
of the mentioned process may be necessary between the master problem and slave problems 
to obtain the final solution. Eventually, the method converges when there are no infeasibilities 
in the slave, and the optimal solution of the original problem is obtained [117]. 

The multi-period energy resource scheduling considering full AC network constraints is a 
MINLP problem. MINLP optimization techniques require high execution time to deal with the 
ERM for real-size distribution networks with large number of EVs. Benders decomposition 
overcomes the difficulties to solve nonlinear optimization with discrete variables [117]. The 
hourly power flow approach proposed by [118] is not the most adequate when temporal 
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dependencies arise with ESS and EVs, because the hourly optimization cannot see minimum 
energy requirements ahead, thus resulting in sub-optimal solutions. The multi-period approach 
procedure is presented in Figure 27. 

 

Start

cuts=1

Solve master problem

Solve multi-period slave problem

Get infeasibility cost and sensitivities

Any 
infeasibilities?

End

Generate a new 
benders cut

m=m+1

No

Yes

 
Figure 27. Benders decomposition flowchart for energy resource scheduling  [121] 

 

The difference of the hourly approach compared with the multi-period approach is that the 
slave problem is an hourly distribution optimal power flow whereas in the multi-period 
approach the optimization is larger and the 24-periods are simultaneously optimized. The 
master problem solves a relaxed formulation of the original ERM problem, namely a MILP 
without considering the network constraints. The second part, called slave problem, solves a 
NLP formulation with fixed variables (binaries of the master MILP) and with network constraints. 
The master and slave problem are solved iteratively until no more cuts can be generated [117]. 
The cuts are new constraints discovered by the slave problem concerning limits violations in the 
optimization process that are added to the master problem. The results found in the last master 
and slave problem is the solution to the original formulation [117]. This method allows to 
appropriately handle the non-convexity associated with binary variables and divide the original 
problem into two easier problems to solve. 
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4.3. Characteristics of smart grid optimization applications 
The variety of models applied to solve SG operation problems can be classified in many ways. 

In this deliverable, we have identified two main groups for classification, namely approaches 
that use mathematical (or classical) models, and a second group based on computational 
intelligence and the use of heuristic and metaheuristic optimization. Mathematical models can 
be considered more reliable and accurate than CI approaches. However, mathematical models 
have some scalability issues typically requiring a large amount of memory and time to deal with 
large-scale problems. CI approaches, on the other hand, cannot guarantee an optimal solution 
but usually can find near-optimal solutions in acceptable times.  

Table 5 summarizes the mathematical approaches adopted to solve SG problems. The table 
also identifies the type of function (i.e., single objective or multi-objective), the objective of the 
formulation (e.g., minimization of operational costs, maximization of profits, etc.), and if the 
approach considers DR programs and which type. It can be noticed that most of the 
mathematical methods formulate the problem as a two-stage stochastic model due to the 
presence of uncertainty. Two-stage stochastic models can be solved using MILP formulations, 
bi-level optimization, or in the case of large-scale problems, with the use of decomposition 
schemes. Highlighted in blue, we can find the contribution of Dream-go project in this regard. 
All Dream-go mathematical contributions consider DR programs and mainly focused on 
minimization of expected cost and maximization of profits.  

 

Table 5 – Summary of mathematical optimization approaches applied in SG operation 

Ref. Approach Multi-
objective 

Objective function DR program 

[87] Bi-level robust stochastic-
MILP scheduling model 

yes Maximum revenue of VPP and 
minimum net load and minimum 
operation cost. 

Price-based demand response 
(PBDR) and incentive-based 
demand response (IBDR). 

[88] Two-stage stochastic 
programming with Benders 

decomposition 

- Minimum production cost 
considering system reliability. 

Demand response 
reserve (DRR). 

[72] Bi-level problem and MILP - First level: minimum charging. 
Second level: Market clearing. 

EVs coordination charging. 

[93] Two-stage stochastic 
centralized dispatch scheme  

- Minimize the expected total 
operating cost. 

EVs coordination charging. 

[75] MILP Optimization - Maximize expected net profit of 
VPP. 

Incentive-based three-level DR. 

[122] Two-stage stochastic 
programming.  

- Maximize expected day-ahead 
profit of VPP. 

Incentive-based three-level DR. 

[86] Stochastic self-scheduling as 
MILP. 

- Minimize the operation costs. The time-of use (TOU) rate. 

[82] Stochastic optimization - Minimize expected cost. Direct load control (DLC). 

[82]* Two-stage stochastic 
programming 

- Minimize the expected operation 
costs. 

DLC. 
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[78]* 
Two-stage stochastic 

programming and Benders 
decomposition 

- 
Minimize operation costs 
considering market transactions. 

DLC. 

[84]* 
Hybrid Interval-Stochastic 

method - Maximize domestic energy profit. DLC. 

[97]* 
Two-stage stochastic 

programming - Maximize the expected profit. Optimal pricing for EVs DLC. 

[7]* Intelligent HEMS algorithm 
and Rule-based HEMS 

- Minimize the daily energy cost of 
the household. 

Price-based DR, incentive-based 
DR, TOU pricing. 

[2]* 
MILP and hierarchical and 
fuzzy c-means clustering 

- 
Minimize aggregator operation 
costs and suitable remuneration 
groups. 

Real-time pricing (RTP) and 
incentive-based DR. 

[89]* Robust optimization - 
Maximize aggregator payoff 
considering price risk. Price-based DR. 

[92] Stochastic linear 
programming 

yes Financial and environmental 
minimization. 

- 

[90] Two-stage stochastic model 
with a decomposition 

scheme 

- Minimize the expected operational 
cost. 

- 

[91] Stochastic optimization and 
distributed Newton’s method 

- Maximize the expected system 
utility. 

- 

[85] Two-stage stochastic 
program 

- Expected profit of the MG. - 

*Works developed in scope of DREAM-GO 

 

Regarding heuristics models, Table 6 summarizes some advanced metaheuristics are 
implemented (and in some cases, modified) to provide near-optimal solutions in acceptable 
times. The heuristics presented in this table include an original extension of a glowworm swarm 
particles optimization algorithm, Tabú search, greedy randomized adaptive search procedure, 
and a novel hybrid optimization algorithm, Particle Swarm Optimization (PSO), Teacher-
Learning-Based Optimization (TLBO), and Biogeography Based Optimization (BBO) algorithm, 
among others. The reader can also be referred to [114], [123] for an extended analysis of 
different approaches in the area. Dream-go has also contributed on the application of 
computational intelligence in SG problems, namely by the use of multi-dimensional signaling 
which is a technique that enhances the capabilities of metaheuristics [83]. 

Table 6- Summary of computational intelligence approaches applied in SG operation 

Ref. Approach Multi-
objective 

Objective function DR program 

[83]* 

Multi-dimensional signaling 
with weighted PSO (W-PSO), 

multi-objective PSO and 
NSGA-II 

Yes 
maximize profits and minimize 
carbon dioxide (CO2) emissions. 

EVs scheduling and Direct Load 
Control (DLC). 
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[124] Extension of a glowworm 
swarm particles optimization 

algorithm 

Yes Minimize yearly joule losses and 
yearly fuel consumptions cost. 

Directly controlled shiftable 
loads. 

[125] Particle Swarm Optimization 
(PSO) with MILP 

Yes maximization of the minimum 
available reserve and the cost 
minimization, considering reliability 
of the system. 

EV charging scheduling. 

[126] Tabu search, GRASP, and a 
hybrid optimization 

algorithm 

- Minimizing the total operational 
costs. 

EVs charging coordination. 

[127] Teacher-Learning-Based 
Optimization (TLBO) 

- Minimizes the total operational cost. - 

[128] Biogeography Based 
Optimization (BBO) algorithm 

- Minimizing the total operational cost 
guaranteeing the availability of 
energy. 

- 

*Work developed in scope of DREAM-GO 
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5. Conclusions 

This report presented an overview of the DR application in smart grid operation in short and 
real-time. Smart metering is key to the successful deployment of DR applications. It is remarked 
that DR can play a meaningful role when combined with SG optimization, e.g., home energy 
management systems, energy scheduling, etc. SG players such as aggregators can take 
advantage of sophisticated optimization algorithms to improve financial results and reduce risk 
while home energy management can benefit the end user. DR is key to manage financial risks 
and uncertainty related to new components and resources of the smart grid, e.g., electric 
vehicles, renewable generation. The deliverable then digs into specifics of smart grid 
components such as the electric water heater, electric vehicle and heat pumps, seen as potential 
controllable devices to foster demand response application. A summary of energy scheduling 
models dealing with uncertainty is discussed, regarding the type of resource considered, 
uncertainty, optimization algorithms used, etc. Due to the nature of the problem, sophisticated 
algorithms are required to handle short and real-time DR in SG optimization in adequate 
execution time as it is remarked in the last section of this deliverable. 
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