
 

 

D7.5 

 
Deliverable D7.5 

Proceedings of the Fourth 
DREAM-GO Workshop



 

 

 



 

 

2019 
JAN 

16 ▪17 

Institute of Engineering - Polytechnic of Porto | Portugal 

   
Proceedings of the Fourth  

DREAM-GO Workshop 

Demand response approaches for 

real-time renewable energy 

integration 



 

 

 

 



 
www.dream-go.ipp.pt 

 

1 

Demand response approaches for real-time  

renewable energy integration 
Fourth DREAM-GO Workshop 

Institute of Engineering - Polytechnic of Porto, Porto, Portugal, January 16-17, 2019 

Contents 

Indoor Real-Time Locating System comparison: Polaris vs FIND3 

David Silva, Luis Gomes, Filipe Sousa, Zita Vale 
3 

Study of Price Elasticity’s Predictability for Special Low Voltage Consumers   

Pierfrancesco Corsi, Pedro Faria, Zita Vale 
10 

Review on the main flexible residential loads with potential to participate in 

Demand Response 

Lurian Klein, Luisa Matos, Jorge Landeck 

15 

Demonstration of Electric Water Heater DR Possibility with Financial Benefit 

Analysis 

Tofael Ahmed, Pedro Faria, Zita Vale 

22 

Review of the state of the art of machine models for household consumption 

prediction 

Guillermo Hernández, Alfonso González-Briones, Pablo Chamoso, Roberto Casado-Vara, 

Javier Prieto, Kumar Venyagamoorthy, Juan Corchado 

31 

Electric Water Heater Modeling, DR Approaches Analysis and Study of 

Consumer Comfort for Demand Response 

Tofael Ahmed, Pedro Faria, Zita Vale 

37 

An Optimization Algorithm for Cost Minimization in Residential Buildings 

Mahsa Khorram, Pedro Faria, Omid Abrishambaf, Zita Vale 
43 

Irrigation Scheduling in Crop Management System 

Eduardo Salgado, Luis Gomes, Pedro Faria, Zita Vale  
49 

Aggregation of Consumers and Producers in a Community with different 

Clustering Methods 

Cátia Silva, Pedro Faria, Zita Vale, Nikolaus Starzacher 

53 



Proceedings of the Fourth DREAM-GO Workshop 

2 

Demand Response Approach for the Coordination Between Aggregators 

and Providers 

Roger Schemes, Pedro Faria, Rubipiara Fernandes, Zita Vale 

59 

Applying real-time pricing for wind curtailment scenario using D2RD module 

of TOOCC  

Brígida Teixeira, Omid Abrishambaf, Pedro Faria, Zita Vale 

67 

Economic Survey on a Community of Prosumers and Distributed 

Generations  

Omid Abrishambaf, Sonja Haux, Pedro Faria, Zita Vale, Nikolaus Starzacher 

73 

Impact of drought periods on hydroelectric production in Portugal: A Study 

from 2015 to 2017  

José Sousa, Miguel Adrego, Pedro Silva, Pedro Faria, Zita Vale 

78 

Modeling of a Low Voltage Power Distribution Network of a University 

Campus  

Omid Abrishambaf, Pedro Faria, Zita Vale 

87 

Real-Time Simulation of Hybrid Energy Solution for Microgeneration in 

Residential Buildings  

Omid Abrishambaf, Pedro Faria, Zita Vale, Alexandra Pitombeira, Mateus de Holanda, 

Elizabete Pimentel, Sandoval Júnior, Jennifer Santana, João Gracindo, Marcelo Corrêa 

94 

 



 
www.dream-go.ipp.pt 

 

3 

Demand response approaches for real-time  

renewable energy integration 
Fourth DREAM-GO Workshop 

Institute of Engineering - Polytechnic of Porto, Porto, Portugal, January 16-17, 2019  

Indoor Real-Time Locating System comparison: 

Polaris vs FIND3 

David Silva, Luis Gomes, Filipe Sousa, Zita Vale 

IPP – Polytechnic of Porto, Porto, Portugal 

 

Abstract 

The use of real-time locating systems can be used in several fields, from security and health to building and 

energy management. However, there is no consensus in what the better solution or technology is to be used in 

an indoor location system. This paper presents a comparative study between a market real-time locating system 

and an open source real-time locating system. The systems that will be compared are Polaris and FIND3. The 

tests were performed in an office building. 

Keywords: indoor location, real-time locating systems 

1. Introduction 

Real-Time Locating Systems (RTLS) are used to locate persons and objects inside an identified zone; 

usually indoors. They can be used in multiple fields, such as security [1, 2] and health [3-5]. However, the 

indoor location is not a trivial task and there are not, until now, a known technology that can, with efficiency 

and effectiveness, provide high-resolution location with minimal delay. Therefore, there are several 

solutions that use multiple techniques and technology to provide indoor locations. 

In this paper, it will be deployed and compared two RTLS indoor solutions: Polaris [6], and FIND3 [7]. 

Polaris is a market solution that uses Zigbee protocol [8] and is able to identify the location of tags – 

physical devices that need to be coupled to the person/object that we want to monitor. FIND3 (Framework 

for Internal Navigation and Discovery 3) is an open source solution that combines Wi-Fi (IEEE 802.11) [9] 

and Bluetooth [10] and enables the location of persons using the smartphone signal. This paper will present 

the location results using these two systems. 

After this introductory section, is presented in Section 2 the Polaris and FIND3 systems. Section 3 

describes how these systems were deployed in an office building. Section 4 shows the results of the two 

systems in the same office. The main conclusions are presented in Section 5. 

2. Real-Time Locating Systems 

In this section, it will be presented the two RTLS used system: Polaris and FIND3. The two used systems 

differ from the technology that they use for indoor location but are similar in their operation and use. The 

biggest operation differentiation is that Polaris provides a geographical location (i.e., with two axes) while 

FIND3 only provides the identification of the zone where the user is. 
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2.1 Polaris 

Polaris is an RTLS, developed by the Spanish company Nebusens. This RTLS solution uses the n-Core 

platform, provided by the same company, and it uses Zigbee standard in the communication between system 

devices. The system uses 3 types of devices that must be used: collector, reader, and tag. The collector 

device (e.g., n-Core Sirious A) is installed together with an RS-485 to Ethernet converted, it is responsible 

to collect all Zigbee data, provided by the reader, and sent it to the Polaris server. The reader devices (e.g., 

n-Core Sirious D) are responsible to read the tag signals and send the signal strength to the collectors. In 

readers can, it can be added a module for a relay control, this enables Polaris system to control physical 

resources, such as door lockers and lights. Collectors also provide the reader functionalities and can read 

tag signals. The tag devices (e.g., N-Core Sirious B or N-Core Sirious Quantum 2.0) are small devices that 

should be with the person or object that we want to monitor. These tags also have the ability to send custom 

signals to Polaris, each has two buttons that can be pressed by the user and their actions can be programmed 

in the Polaris system. 

Polaris system provides a web interface for system configuration and location monitor. Fig. 1 shows the 

browser interface of Polaris. In the interface, an image is presented combining the satellite image of the 

building, the building’s blueprint and the Polaris devices location; activated collectors, readers, and tags. 

The real-time interface provides the location as well as information regarding the tags (i.e., if a tag button 

was pressed). Polaris also provides an Application Programming Interface (API) using Simple Object 

Access Protocol (SOAP). The API enables the use of Polaris by third-parties, that can query Polaris system 

to check several parameters, such as tag positions. 

 

Fig. 1: Polaris web interface. 

2.2 FIND3 

Framework for Internal Navigation and Discovery 3 (FIND 3) is an open source solution wish allows 

locating people indoors based on Wi-Fi and Bluetooth technologies. In FIND3 there is no demand for 

hardware installation, the system is able to work using only one smartphone. However, to improve the 

location precision is recommended the installation of multiple devices. FIND3 uses the fingerprints of Wi-

Fi and Bluetooth wireless networks to identify locations. For this to be possible, the user must create zones 

and train the system. The training is performed in a Wi-Fi and Bluetooth compatible device – can be a 

smartphone – where the user must go to each zone and stay there for a while. The mobile application will 

monitor Wi-Fi and Bluetooth networks signals and store this information in the server. By learning, the 

system will be able to identify, according to real-time Wi-Fi and Bluetooth readings, the user’s location. 

FIND3 provides a web interface where the real-time location values can be monitored. Moreover, the 

system is able to perform accuracy results for each zone. Fig. 2 shows the FIND3 web interface with the 

accuracy values for each zone created in the system: office N112, office N113, office N114, office N115, 

and office N116. The server can be installed locally or remotely. Also, FIND3 provides an API for third-

parties to access the location data. 
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Fig. 2: FIND3 web interface. 

3. RTLS deployment in an Office Building 

Polaris and FIND3 were partially deployed in building N of Research Group on Intelligent Engineering 

and Computing for Advanced Innovation and Development (GECAD), Polytechnic of Porto (P.PORTO). 

The offices used to deploy the system were N110, N111, N112, N113, N114, N115, N116 and the respective 

corridor, as shown in Fig. 3, where these offices are marked with colors. For FIND3, offices N110 and 

N111 were not considered. 

 

Fig. 3: Offices where Polaris and FIND3 were deployed. 

Fig. 4 shows the overall planning of Polaris deployment; where collectors are identified as pink 

pentagons and readers are identified as yellow stars. However, Polaris was not deployed in the entire 

building, as seen in Fig. 3. Each office has one reader and the corridor has two readers and one collector.   

For FIND3 deployment, it was only used Wi-Fi networks. By default, the building has more than 20 Wi-

Fi networks provided by indoor access points and from other building’s access points. To decrease the 

FIND3 error, new low-range access points were added to each room. It was used the ESP8266 module to 

provide the new Wi-Fi signals. 



Proceedings of the Fourth DREAM-GO Workshop 

6 

 

Fig. 4: Designated locations for the different types of Polaris devices. 

The ESP8266 module has the ability to work as an access point. However, their wireless range was too 

expressive; reaching the entire building. To solve this issue, the antennas were cut to decrease the Wi-Fi 

signal; this enables the ESP8266 signal to stay only in the office and near the installation office. As seen in  

Fig. 5, some experimental cuts were done. 

        

Fig. 5: ESP8266 with antenna cut off. 

All the devices, to support Polaris and FIND3, were placed in the locations specified in Fig. 4. There 

was installed electrical boxes to accommodate each device, as can be seen in Fig. 6. In each installation, 

box was included a power supply of 5 V/DC and a step-down regulator from 5 V/DC to 3.3 V/DC.  

   

Fig. 6: Installation. 

4. Location Results of Office N112 

Several test positions were specified in office N112 to perform the comparative tests; these positions are 

identified in Fig. 7. The central position, B1, is also the location of the Polaris reader and the FIND3 

ESP8266. The positions from A1 to A4 are placed near the office’s corners. The A1-A2 wall (top of the 

image) is the division from offices N112 and N111, while the A3-A4 wall (bottom of the image) is the 

division from offices N112 and N113. All the measures were performed in the identified positions at a 95 

centimeters height. 

The 95 cm height was used to simulate a person; assuming that the Polaris tag and FIND3 smartphone 

will be in the user’s pocket. The ordered of all the five positions were set clockwise and position A1 is 

always located in lower left corner; to identify the lower left corner the user must be inside the office facing 

its center and having his/her back pointing to office’s door. 
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Fig. 7: Office N112 test positions. 

The tests were made two times, one with the office’s door open and one with the office’s door closed. 

Because Polaris and FIND3 use wireless signals, the interference of a door can affect the results. Therefore, 

the tests were made with and without the door being open. 

The tests were performed in each position during a 5-minute period where measures were taken each 

minute. The test, as stated before, were executed two times: with the door open, and with the door closed. 

The 5-minute window starts every time the Polaris tag and FIND3 smartphone are placed in a position. 

Therefore, is possible to see the reaction of both systems and the delay they have. 

The bar chart of Fig. 8 shows the Polaris results for each position while the door stays open. The chart 

schematizes the distances, in meters, between a real and virtual position in the five samples made for five 

minutes, with the door open. Each position bar represents the minute measure; from darker blue to lighter 

blue. The virtual position is the position indicated by Polaris, while the real position is the physical position 

of the Polaris tag. In all the positions of this test, the distance error remained very similar during the five 

minutes measured. A1 position is the one that has the biggest error, reaching a 3.5 meters error, while B1 

position has the smallest error. During the 5-minutes period, B1 position improved its accuracy, by 

decreasing its error, but in A2 position the results changed and the error increase alongside the time. 

 

Fig. 8: Chart of Polaris results in room N112 with open door. 

Fig. 9 shows the results of the tests using the Polaris system with the office’s door closed. 

Unexpectedly, the errors increased in A3 position. However, all the other positions stayed with the same or 

lower error. In A1 and A2 positions, the error was constant for the 5-minute window, while the other points 

have slightly changed. 
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Fig. 9: Chart of Polaris results in room N112 with closed door. 

FIND3 did not provide a precise location of the smartphone. Instead, the system identifies, by 

probability, the zone where the smartphone is. Fig. 10 shows the 5 samples measured for each position 

when the door was open. The colors identify the probability of the smartphone being in each of the 

offices/zones. With this representation, it is possible to see that in the 1st and 2nd minutes there is little 

density of darker colors aligned with 112 (middle of the chart). But from the 3rd minute on, the darker 

central color zone becomes more stable, even at position A2 (represented in Fig. 7); which is the one that 

had the smallest accuracy. This means that initially, the office N112 is not well recognized in some of the 

positions tested with the door open. However, the accuracy of the system, in this room, began to improve 

significantly in the final minutes. 

 

Fig. 10: Chart of FIND3 results in office N112 with open door. 

In the closed-door scenario, the tests were also satisfactory as shown in Fig. 11. With the door closed, 

the system reacted faster and even from the first minute is visible a darker central color indicating that the 

system knew the smartphone was in office N112. However, similar to the previous test, the A2 position 

presents the highest error. 

 

Fig. 11: Chart of FIND3 results in Office N112 with closed door. 
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5. Conclusions 

This paper presents the analyses of two real-time locating systems: Polaris and FIND3. To provide 

indoor location, Polaris uses Zigbee wireless signals while FIN3 uses Wi-Fi and Bluetooth wireless signals. 

This paper describes the deployment of these two systems and their performance in the same scenario. 

Polaris has the advantage ability to perform geographical locations, using two axes, while FIND3 is only 

able to identify the zone where the person/object is. However, the use of Polaris demands the installation 

of dedicated hardware and demands that the person/object carries one Polaris tag. Another advantage of 

FIND3 is the ability to continuously learn; enabling the user to teach the system about new zones or simply 

retrain existing zones to improve the system location accuracy. 

Both systems have advantages and disadvantages, the decision of which one is better should depend on 

the need and goal of the user. To identify if and who is inside an office, FIND3 should be considered the 

best option because it does not demand the installation of hardware and uses the users’ smartphones. 

However, if a precise location inside the building is needed, Polaris is the only option; between these two. 

Acknowledgments. The present work was done and funded in the scope of the following projects: H2020 

DREAM-GO Project (Marie Sklodowska-Curie grant agreement No 641794), from FEDER Funds through 
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Abstract 

Demand Response programs have been assuming lot of importance in the simulations for electric systems in the 

last years. Their evolution brought to the need of new models able to consider the power consumption profile 

for every category of user; moreover, in order to better match energy consumptions and productions, highly 

precise forecasts of loads’ profiles will be needed. This goal can be achieved also thanks to the definition of the 

elasticity factor. This paper proposes a way to obtain the elasticity price value for the BTE type of user together 

with an interpolation able to predict it. It will be discussed about the importance of having a real-time elasticity 

value able to vary according to specific factors, as for example user’s habits during the weekends or weekdays 

and weather forecasts. 

Keywords: demand response, price elasticy, elasticity forecasting, smart grid 

1. Introduction 

Demand Response represents a way both for final consumers and transmission system operator to 

optimize power fluxes during the all day by a technical and an economical point of view. It allows users to 

respond to electric market offers managing their power consumptions. Load shifting allows for the transfer 

of load from less to more attractive periods (e.g. lower energy tariffs when dynamic pricing is considered) 

[1], [2]. 

It may be interesting analysing demand response from a generation point of view, in fact load shifting 

represents a useful way to move load from periods where the generation availability is lacking to others 

when it is abundant (e.g. photovoltaic energy is only available during the day). 

There are different categories of electric consumers according to their power consumption: domestic, 

commercial and industrial. For each one of these consumer’s perspective, energy management systems can 

bring economic advantages: in order to get them several adaptive features are needed but they increase the 

consumer’s comfort and reduce energy expenditure with an efficient strategy [3], [4]. 

According to [5] industrial and large commercial loads have generally been considered better candidates 

for DR programs as each individual customer can provide more response. Elasticity is a parameter that 

characterizes every user as it expresses how much is willing to change its power absorption in response to 

price changes. Two types of elasticities are defined, in order to better describe the behaviour of the final 

user in response to price variations: short-run elasticity and long-run elasticity.  Short-run elasticity 

describes the consumer response during the first year since the variable of concern changed while the long-

run one takes into account a larger amount of time. According to [6] this distinction allows to observe how 
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consumers’ adaptation changes over time. In particular it shows that short-run elasticity describes the price-

response from the system with its current infrastructure and equipment while long-run one considers 

investments that can be made in response to higher prices. In [7]  it is also said that reduction in electricity 

consumptions in response to prices, particularly by residential consumers, is relatively inelastic in the short 

term. It means that even high price increases produce fairly small changes in electricity usage. Large 

consumers as industrial ones, on the other hand, are relatively price sensitive. 

Elasticity parameter can be a characterization for every type of consumer because each costumer can 

have different consumption’s profile. That brings to the need of define an elasticity value for each user, 

able to change in time according to factors as the day of the week or weather forecast. This could be helpful 

for the transmission system operator to better manage real time power fluxes.  

In this paper the BTE user type will be analysed in order to demonstrate that is possible to predict 

elasticity value basing on historical data thanks to interpolating functions. This work intends to explain how 

the values are obtained and how good are the approximations, referring to MAPE method. 

2. Analytical approach for elasticity’s predictability 

It is possible to predict users’ elasticities from graphs of relative price variations in function of relative 

absorbed power’s variations. Indeed, elasticity formula is given by equation (1): 

𝒆 =
∆𝑸/𝑸

∆𝑷/𝑷
 

 

 

          (1) 

Where Q represents the absorbed power, ΔQ its variation (after and before Demand Response), P 

represents the price and ΔP its variation (after and before Demand Response). 

 

Fig. 1: Graph of ΔP/P in function of ΔQ/Q for BTE user type. 

In Fig.1 it is shown how relative price variation is related to relative power absorption. The study was 

made using (DATA ORIGIN) as input data, assuming for the BTE consumer type the e=0,37 elasticity 

value. A linear interpolation line was adopted, whose equation is represented in the corner of Fig.1.  

The angular coefficient represents the slope of the line, given by the equation (2). 
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𝒔𝒍𝒐𝒑𝒆 =
∆𝑷

𝑷

∆𝑸

𝑸
⁄  

 

 

          (2) 

Therefore, elasticity value is given by the reciprocal of the slope. Calculations brought a value of e=0,37 

that perfectly matches the one given as input data. It means that linear interpolation can be a good method 

to predict elasticities’ values. 

Other types of interpolations are possible, such as polynomial (quadratic or cubic) and logarithmic. In 

order to see how much each interpolation is good the MAPE (3) was used. MAPE stands for “mean absolute 

percentage error” and according to [8] is one of the most widely used measure of forecast accuracy in 

businesses and organizations.  

3. Results 

𝑴𝑨𝑷𝑬 =
𝟏𝟎𝟎%

𝒏
∑

|𝑨𝒕 − 𝑭𝒕|

𝑨𝒕

𝒏

𝒕=𝟏

 

 

          (3) 

Equation (3) gives a value that express the accuracy of the interpolation referring to the input data. This 

value can be [9] less than 10, between 10 and 20, between 20 and 50 or over 50: it means that have been 

used a highly accurate forecasting, a good forecasting, a reasonable one and an inaccurate one respectively. 

That is because (3) equation considers the actual values (called “At”) and the forecast values (called “Ft”) 

both averaged on the total number n of elements. MAPE error has been computed for BTE user type for 

the case of linear, quadratic and cubic interpolation. 

 

Fig. 2: Graph of ΔP in function of ΔQ (blue points) and forecast points (orange) based on interpolation line. 

Fig. 2 shows new values of ΔP, called ΔP’, based on interpolation line. Line’s equation is written on the 

left corner of the graph and can be used to estimate ΔP forecast values in function of ΔQ points. MAPE has 

been calculated for this case: 21 elements were studied and put into equation (3) as n variable. The value is 

MAPE=4.884 meaning that a highly accurate forecasting has been made. 

MAPE calculations have been made also with a quadratic interpolation, shown in Fig. 3. In this case 

MAPE=4.393, meaning that this interpolation is better than the linear one. Blue points represent measured 

values and orange ones the new values based on the interpolation function, written on the left corner. 
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Fig. 3: Graph of ΔP in function of ΔQ (blue points) and forecast points (orange) based on quadratic interpolation. 

 

Fig. 4: Graph of ΔP in function of ΔQ (blue points) and forecast points (orange) based on cubic interpolation. 

MAPE value in this case is 4.396. A comparison between quadratic and linear case shows that cubic 

interpolation is not better than the quadratic one. 

Logarithmic interpolating function was taken into account, but it resulted to have a MAPE value worse 

than other methods, precisely 21.137. It is shown if Fig. 5. This means that the other interpolating methods 

presented (linear, quadratic and cubic) are more indicated. Moreover, if all values along the 24h of a day 

are collected, it may happen that some of them are related to moments without DR characterized by any 

ΔQ neither ΔP so logarithmic interpolation wouldn’t be able to manage those points in the origin of the 

axes. 
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Fig. 5: Graph of ΔP in function of ΔQ (blue points) and forecast points (orange) based on logarithmic interpolation. 

4. Conclusions 

In this paper it was shown how to obtain the elasticity value of a user by analysing the graph of the 

relative price variation in function of the relative power absorption. By knowing that value, more accurate 

forecasts can be done resulting in a better balance between consumption and power offer. This will be 

handful for transmission system operator that is in charge to keep demand and offer always balanced. In 

the second part of the paper, a distinction between three types of interpolating functions has been made in 

order to see which way was more accurate by comparing the MAPE parameter. After excluding the 

logarithmic interpolation due to its high MAPE, it has been demonstrated that linear, quadratic and cubic 

functions are able to interpolate points with a good accuracy; in particular, there’s not a sensitive difference 

between the quadratic and the cubic one.  
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Abstract 

Demand Response programmes represent an important component in the establishment of smart grids, since 

the management of load flexibility enables demand to be dynamically adjusted according to fluctuations in the 

price of electricity in the wholesale energy market, or according to the supply of distributed energy generation 

from renewable sources. Given the importance of load flexibility for the optimised management of smart grids, 

this paper argues that it is essential to carry out a technical characterisation of the main flexible residential loads 

with potential to participate in Demand Response programmes. For that, the scientific literature was reviewed. 

This review carried out in this study aimed to point out different approaches in the selection of flexible 

residential loads with potential to participate in DR programmers, as defined by 6 different authors. The main 

conclusion that can be drawn from the review of the studies selected in this paper is that there is a consensus on 

the main flexible residential loads with potential to participate in DR programmes. In conclusion, this study 

argues that there is the need to design and implement real case studies that examines the impact of the selected 

flexible residential loads under different scenarios and under real-market conditions to access the new market 

potential in this field. It is only through the successful implementation of innovative DR programme models 

(followed by the scaling up from pilots to commercial deployments) that the benefits of demand flexibility will 

be truly known. 

Keywords: demand response, flexibility, load management, smart grid 

1. Introduction 

As evidenced by Yin et al. (2016) [1] and Tulabing et al. (2016) [2], the high penetration of renewable 

resources in the energy grid is increasingly driving the need to promote ancillary services as means to 

absorb potential interruptions of power supply caused by the intermittency of distributed energy generation, 

thus reducing critical peaks in energy demand. In view of this, the comprehensive management of load 

flexibility from the demand side through Demand Response (DR) programmes represents a low-cost 

alternative for the provision of ancillary services to the energy grid in comparison to the management of 

flexibility from the supply side through reserve generation units, which represent costly non-renewable 

sources of uninterrupted power to the grid that are activated during emergencies in power supply. 

In view of this, DR programmes represent an important component in the establishment of smart grids, 

since the management of load flexibility (through mechanisms of load shedding or load shifting) enables 

demand to be dynamically adjusted according to fluctuations in the price of electricity in the wholesale 

energy market, or according to the supply of distributed energy generation from renewable sources [1] [2]. 
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As pointed out by the abovementioned authors, the emergence of DR programmes was made possible 

in part by technological advances in Information & Communication systems, as it allows the optimal 

management and aggregation of distinct flexible loads in real-time, enabling in this way the transaction of 

these aggregated flexible loads in the wholesale energy market. 

Dyson et al. (2015) [3] explains that DR programmes in liberalised energy markets could represent a 

major benefit for utilities, energy suppliers, aggregators, Distribution System Operators (DSOs) and 

Transmission System Operators (TSOs), since the balancing of supply and demand promoted by these 

programmes results in the reduction of the costs of maintenance of the energy grid infrastructure and in the 

reduction of the electricity price fluctuations in the energy market. In this sense, in order to remain 

competitive in the new paradigm brought forward by smart grids and distributed energy resources, these 

traditional big players need to develop new business models and learn from pilot programmes to design 

new services focused on the final customers that lead to behavioural changes related to the flexible 

consumption of energy, as means to encompass the new value proposition derived from DR programmes 

and create new revenue opportunities outside of traditional utility offerings. 

In this sense, Dyson et al. (2015) [3] and Goldenberg et al. (2018) [4] suggest that policy makers should 

support the introduction of new incentives that facilitate public-private partnerships (PPPs), thereby 

fostering innovation in the energy sector. Furthermore, the authors also suggest that policy makers should 

support the creation of new regulatory frameworks that ensure investment recovery for those utilities that 

invest in the adoption of load flexibility management as a power grid balance asset. These developments 

may come in the form of new tariff models that reflect the marginal costs of utilities, ensuring that the 

reduction of the final customer's invoice (and hence the reduction of the utility's own revenue) also takes 

into account the significant cost reduction of network maintenance. Finally, the authors suggest that policy 

makers should support the creation of incentives (i.e., monetary incentives, such as rebates; and non-

monetary incentives, such as automation and DR programmes) that facilitates the purchase of flexibility-

enabling technologies to increase end-user involvement in DR programmes. 

Given the importance of load flexibility for the optimised management of smart grids, this paper argues 

that it is essential to carry out a technical characterisation of the main flexible residential loads with potential 

to participate in DR programmes. For that, the scientific literature was reviewed. 

2. Literature review 

This review carried out in this study aims to point out different typologies of flexible residential loads 

with potential to participate in DR programmers, as defined by different authors. When loads were not 

clearly grouped and categorised, they were listed as individual loads. 

2.1 Classification proposed by Tulabing et al. (2016) 

Tulabing et al. (2016) [2] developed a load aggregation prioritisation algorithm based on the flexibility 

response characteristics of different typologies of residential loads. For this, the authors categorised 

different residential loads into 3 different typologies of flexible loads and 1 typology of non-flexible loads, 

as detailed in Table 1. 

The study simulated 3 different scenarios to test out the proposed load aggregation prioritisation 

algorithm. For the simulations, battery-based energy storage technologies were left aside, and electric 

vehicles were taken solely as a load and not as a battery that supplies power to the grid. This was done to 

highlight the potential of the aggregation methodology to balance the grid without the need to rely on energy 

storage devices. In view of this, the 3 different scenarios are presented: 

• Mitigation of system peak demand: the prioritised mechanism deployed in this scenario was load 

shifting capacity from electric vehicle charging, refrigeraton and non-urgent TCLs; 

• Mitigation of distributed energy resources disruptions: the prioritised mechanism deployed in this 

scenario was load shedding capacity from HVAC systems, freezers and refrigerations; 

• Mitigation of market price fluctuations: the prioritised mechanism deployed in this scenario was 

load shedding capacity from electric vehicle charging, non-urgent TCLs, fridges, and freezers. 
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Table 1: Definition of each typology of flexible residential loads with potential to participate in DR programmes 

proposed by Tulabing et al. (2016)1. 

Typology Types of loads Definition 

Battery-based 

loads 

Electric 

vehicles; 

stationary 

batteries 

These loads are considered flexible since they can store chemical energy 

and can be recharged.  

They are also considered to be interruptive since they can be delayed as 

long as they meet the charging requirements set by the end-user. In this 

sense, the recharge can be interrupted when there is insufficient power in 

the network, which consequently approximates the "expected time to 

complete the recharge" to the "last available time to finish its recharge 

operation in time, as required by the end-user." Within these specifications, 

whenever there is a surplus electricity available in the network, recharging 

can resume automatically 

Thermostatically 

Controlled Loads 

(TCLs) 

HVAC systems; 

water heaters; 

refrigerators; 

freezers 

These loads are considered flexible since they have the capacity to store 

thermal energy.  

These loads are prioritised according to the temperature deviations from 

their predefined setpoint – i.e., tolerance for temperature deviation 

(deadband). In this sense, loads with higher deadbands must be used first. 

The flexibility of TCLs is also achieved by maintaining the flexibility 

values below the established maximum temperature value (in the case of 

the cooling mode) or higher than the established minimum temperature 

value (in the case of the heating mode) even though it is still within the 

thermal zone of the deadband. 

In the case of HVAC systems, it is noted that load shifting mechanisms (i.e., 

precooling) are more efficient than load shedding, since the former can keep 

the thermal comfort of the interior of buildings for longer periods of time 

Non-

TCLs 

Non-

urgent 

Dishwashers; 

clothes washers; 

Clothes dryers 

This category includes non-urgent loads that are considered flexible since 

they can be started after some admissible time. 

Given that these loads can be delayed, they provide room for flexibility 

between "the expected end time based on the duration of its operation" and 

"the last time required to complete its operation on time, as required by the 

end-user." 

Unlike the batteries, the operations of these loads cannot be interrupted once 

they are started- Therefore, the prioritisation of the flexibility of this type 

of loads is to avoid exceeding the last time necessary to finish its operation 

in time, as required by the end-user 

Urgent 

Entertainment 

(e.g., computers, 

televisions, 

video games, 

etc.); cleaning; 

cooking; 

lighting 

These loads are not flexible since they need to respond instantly to the end-

user's request as soon as the equipment’s switch is turned on. Thus, they 

should have the highest priority and be addressed first among all types of 

flexibility, in order to allow end-users to have their daily routines affected 

as little as possible by DR programmes 

2.2 Classification proposed by Hoogsteen et al. (2016) 

Hoogsteen et al. (2016) [5] developed a mechanism for the creation of artificial residential load 

flexibility profiles, which allowed the evaluation of different approaches for DR programmes in smart grids. 

Specifically, the authors categorised the main flexible residential loads into 4 distinct classes: 

timeshiftables, buffer-timeshiftables, buffers and curtailable, as explained in Table 2. 

On the other hand, non-flexible loads were divided into 6 different categories: stand-by loads, 

electronic equipment, lighting, induction equipment (ventilation), refrigerators and others. 

                                                           
1 Source: Adapted from Tulabing et al. (2016). 

 



Demand response approaches for real-time renewable energy integration 

 

18 

Table 2: Definition of each typology of flexible residential loads with potential to participate in DR programmes 

proposed by Hoogsteen et al. (2016) 2. 

Typology of 

flexible loads 

Types of 

loads 

Definition 

Timeshiftable 

Dishwashers; 

clothes washers; 

clothes dryers 

Load flexibility is specified through operations with predefined start and 

end times. In this way, operations cannot be started before the start time nor 

finalised after the end time that were predefined 

Buffer-

timeshiftable 

Electric vehicles Load flexibility is specified by operations with a predefined start time, 

deadline and required energy demand. 

Electric vehicles have both their maximum power consumption capacity 

and buffer capacity fixed 

Buffer 

Stationary 

batteries; 

water heaters 

These equipment have specified their maximum power consumption, 

production level and capacity 

Curtailable 

Photovoltaic 

panels 

Load flexibility is defined through operations that establish a fixed profile 

of consumption and production, as well as the amount of energy that can be 

reduced 

2.3 Analysis carried out by Yin et al. (2016) 

Although the study conducted by Yin et al. (2016) [1] did not specifically focus on the categorisation 

of different categories of flexible residential loads, it presented promising results for DR estimation models 

targeting Thermostatically Controlled Loads - namely, heating, ventilation and air conditioning (in the case 

of commercial buildings) and multi-dwelling unit, single unit, water heaters and refrigerators (in the case 

of residential buildings).  

Through the aggregation of the different flexible loads of these equipment, the proposed model 

quantified the DR potential (i.e., load shifting) for both commercial and residential sectors, as well as 

quantified the energy savings that could have been obtained through the creation of different scenarios of 

setpoint adjustment. The study concluded that HVAC systems represent a good asset for DR programmes 

for the following reasons: 

• HVAC systems account for a substantial share of the electrical consumption of buildings; 

• The “thermal flywheel” behaviour of indoor building environments allows HVAC systems to be 

temporarily switched off (i.e. load shedding) without immediate impact on the comfort of the 

building’s occupants; 

• DR programmes targeting HVAC systems can be at least partially automated with smart 

management and control systems, thus reducing user responsibility for the implementation of the 

flexibility programmes. 

2.4 Analysis carried out by Dyson et al. (2015) 

The study conducted by Dyson et al. (2015) [3] performed an economic analysis of five main types of 

flexible residential loads, namely: air-conditioning; residential water heater; electric vehicle charging; 

clothes dryer; and battery energy storage. Specifically, this analysis designed different models for load 

shifting, taking into account the impact of distinct climates, tariff structures as well as PV production on 

load flexibility. 

2.5 Analysis carried out by Goldenberg et al. (2018) 

The study conducted by Goldenberg et al. (2018) [4] demonstrated that flexibility management of 8 

different types of flexible loads through DR programmes (i.e., load shifting to periods of high availability 

of renewable energy in the grid) can level the load demand curve and reduce peak loads. The flexible loads 

selected for this study were: residential water heater; commercial water heater; residential air-conditioner; 

                                                           
2 Source: Adapted from Hoogsteen et al. (2016) . 



Proceedings of the Fourth DREAM-GO Workshop 

 

19 

commercial air conditioner; residential heater; commercial heater; residential plug loads; and electric 

vehicles. 

This study concluded that DR programmes of such magnitude can reduce the contingency (i.e., 

curtailment) of distributed generation by 40%; this increases the value of renewable energy by more than 

30% when compared to a system with inflexible demand, thus transforming renewable energy into a more 

attractive asset for the deployment of smart grids. In addition, DR programmes can reduce energy demand 

during peak periods by 24%, as well as reduce the average magnitude of the multi-hour peaks (i.e., the 

“duck curve”) by 56%. 

2.6 Analysis carried out by Pipattanasomporn et al. (2014) 

The study conducted by Pipattanasomporn et al. (2014) [6] trialled the potential of 11 different 

residential loads from two American households to participate in DR programmes. Specifically, the focus 

of this study was to elaborate an extensive dataset of the consumption profiles of these equipment. 

The selected equipment is presented in Table 1, as well as their respective flexibility potential to 

participate in DR programmes. 

Table 3: Potential of 11 different residential loads to participate in DR programmes3. 

Appliance 

type 

Average 

peak power 

consumption 

in a cycle 

(W) 

Average min 

power 

consumption 

if DR is 

performed 

(W) 

Load 

reduction 

potential 

(W / %) 

Possible 

interruption/ 

deferral 

period 

DR 

potential 

DR 

potential 

rank 

House 1 

Clothes 

dryer 

2,950 185 2760W-

2950W / 

94%–100% 

Up to 30min/ 

Up to several 

hours 

High 1 

Air 

conditioner 

1,150 0 1,150W / 

100% 

Vary Medium 2 

Clothes 

washer 

580 0 580W / 

100% 

None/ Up to 

several hours 

Low 3 

Refrigerator 365/135 0 365W / 

100% 

Up to several 

hours (defrost 

cycle) 

Low 4 

House 2 

Clothes 

dryer 

5,760 226 5,534W-

5,760W / 

96% - 

100% 

Up to 30min/ 

Up to several 

hours 

High 1 

Water 

heater 

4,500 0 4,500W / 

100% 

Vary High 2 

Air 

conditioner 

2,000 0 2,000W / 

100% 

Vary Med 3 

Dishwasher 1,180 0 1,180W / 

100% 

None/ Up to 

several hours 

Med 4 

Refrigerator 500 - 145 0 500W / 

100% 

Up to several 

hours (defrost 

cycle) 

Low 5 

Clothes 

washer 

200 0 200W / 

100% 

None/ Up to 

several hours 

Low 6 

Oven 1,300 – 3,000 0 0 None None None 

                                                           
3 Source: Adapted from Pipattanasomporn et al. (2014). 
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Table 3 compares the energy consumption of the different equipment, as well as their potential to 

reduce peak power, their load shedding/ shifting capacity (without affecting end-user comfort) and potential 

to participate in DR programmes. 

As can be seen for House 1, the equipment that presented the highest potential for load reduction during 

peak hours through DR programmes was the clothes dryer, followed by the air conditioner, clothes washer 

and refrigerator.  

In the case of House 2, the equipment that presented the highest potential for load reduction during 

peak hours through DR programmes was also the clothes dryer, followed by the water heater, the air 

conditioner, dishwasher, refrigerator and, finally, the clothes washer.  

In view of these results, the authors reached the following conclusions: 

• Clothes dryers represent the residential loads with the greatest flexibility potential to participate 

in DR programmes amongst all loads selected in this study. This is because the load shedding or 

shifting of this typology of flexible residential load has the potential to considerably reduce the 

total electric consumption of a household. Load shedding can be performed using hardware 

devices that disconnect the heating coils of the machines, thus allowing them to dry the clothes 

without heating. However, this interruption should not exceed 30 minutes to avoid excessive heat 

loss. Load shifting can also be performed using automated management and control systems that 

delay the start time of their drying cycles. The deadband to carry out the load shifting mechanisms 

can be of several hours, depending on the level of urgency of the end user in having the drying 

cycle completed; 

• Water heaters can offer the second greatest flexibility potential to participate in DR programmes 

(namely load shifting performed through direct load control programmes – i.e., network operators 

have the right to directly change the load profiles and operating setpoints of electrical equipment 

according to the requirements of each end-user). To perform direct management and control of the 

water heating process without affecting end-user comfort, it is necessary to perform real-time 

monitoring of the water temperature inside the heating tank so that the interruption of the water 

heating operation takes place only within a predefined water temperature limit set by the end user. 

Thus, whenever the water temperature in the heating tank exceeds this limit, the heating operation 

of the water is resumed; 

• Air conditioners offer a medium flexibility potential to participate in DR programmes, since their 

automated control can reduce approximately 1 kW of peak power consumption (in the case of 

splits) and 2 to 4 kW of peak power consumption (in the case of centralised HVAC systems). The 

simplest way to implement DR programmes with air conditioners is by adjusting their temperature 

setpoints. In this case, all DR programmes are carried out within the comfort limits set by end-

users. Thus, while the indoor environment temperature is within the specified comfort range, the 

operation of the equipment may be interrupted; 

• Dishwashers can reduce their load demand by up to 1 kW through load shifting mechanisms 

performed using automated management and control systems that delay the start time of their 

washing cycles. The deadband to carry out the load shifting mechanisms can be of several hours, 

depending on the level of urgency of the end user in having the washing cycle completed. 

However, these machines cannot have their washing cycles stopped once they are started, thus 

requiring a higher degree of rigor of DR programmes; 

• Clothes washers and refrigerators have low potential to participate in DR programmes due to two 

reasons: firstly, both equipment do not have high consumption profiles; secondly, there are not 

many smart models available in the market that allow the automated shifting of the start of the 

washing, rinsing and spin cycles (in the case of clothes washers) or the defrost cycle (in the case 

of refrigerators); 

• Ovens do not offer any load flexibility for DR programmes, since the shedding or shifting of their 

load significantly affects the comfort and convenience of end-users. 

3. Conclusion 

The main conclusion that can be drawn from the review of the studies selected in this paper is that there 

is a consensus on the main flexible residential loads with potential to participate in DR programmes. 

Specifically, the flexible loads that appear the most in the scientific literature under analysis were (by order 



Proceedings of the Fourth DREAM-GO Workshop 

 

21 

of magnitude): water heaters (6); HVAC systems (5); electric vehicles charging and clothes dryers (4); 

clothes washers, dishwashers, refrigerators and stationary batteries (3); and, finally, freezer and residential 

plug loads (1). 

As for the impact of each type of flexible residential load in DR programmes, results vary greatly from 

study to study since it depends on a wide array of factors, such as: the purpose of the DR programme (e.g., 

mitigation of system peak demand, of distributed energy resources disruptions or of market price 

fluctuations); load aggregation (or not); use of algorithms for load prioritisation (or not); climate; available 

tariff structures; integration of distributed energy resources; overall demand profile; etc. 

Finally, this study argues that there is the need to design and implement real case studies that examines 

the impact of the selected flexible residential loads under different scenarios and under real-market 

conditions to access the new market potential in this field. It is only through the successful implementation 

of innovative DR programme models (followed by the scaling up from pilots to commercial deployments) 

that the benefits of demand flexibility will be truly known. 
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Abstract 

The household small electrical appliances can participate in demand response events to support the local 

electrical infrastructures. Demand response (DR) plays a major role by reducing peak load consumption and 

controlling distributed generations. This paper presents a demonstration of DR participation of a water heater 

with financial benefit analysis by using a convenience tool. It also discusses a residential water heater DR 

possibility by analyzing the obtained data. The smart grid concept with building energy management system, 

DR flexibility and financial benefits are also discussed here. The main framework of the task consists of electric 

water heater modeling with several parameters and planning for the DR participation. The overall model is also 

demonstrated here with the execution of the planned tasks. The results obtained by using this tool is also 

represented graphically for the demonstration in the paper. It shows that the proposed methodological analysis 

is financially beneficial for both consumers and aggregators. 

Keywords: consumption reduction, demand response, direct load control, financial benefit, modeling 

1. Introduction 

The idea of the smart grid (SG) concept is developed to support the vast possibilities of distributed 

energy resources and renewable energy generations with the latest information and communication 

technologies [1]. It also helps in developing advanced metering infrastructure for energy efficiency, both 

in demand side management and self-controlled electrical grid to maintain supply and demand reliability 

during peak consumption [2]. Use of building energy management system (BEMS) with the integration of 

SG technology can provide sufficient grid flexibility and energy efficiency. The main motivation of climate 

and energy targets for 2020 namely “20-20-20” is to provide an efficient energy system in every phase of 

the energy sector [3]. Electricity consumption in commercial and domestic buildings is increasing at a very 

high rate. The consumption by buildings is 70% in United States where consumption by commercial, 

industrial and residential buildings in Europe is about 40% [4]. 

Demand response (DR) provides flexibility in both the commercial and residential electricity 

management system [5]. The main objective of using DR is to make a balance between consumption and 

generation in the local electricity infrastructure. It can also provide emergency support to the grid, fill 

valleys and shave peak load for balancing electricity. Residential small appliances like Electric Water 

Heater (EWH), air conditioner, dish washer etc. have efficient DR potential. Among those appliances, EWH 

is considered one of the most suitable to participate in DR programs. It consumes a major amount (7.5% to 

40%) of power in the traditional residences [6]. But it has a great potential in the field of power management 
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system as it has storage capability with large adjustment space and the automation control system can easily 

be adapted by it. 

Incentive-based DR program offers incentives to consumers for controlling their usage pattern during 

peak hours. Direct load control (DLC) is one of the types of incentive-based DR programs. In this method, 

the activities in demand side can be controlled (shutdown or cycle change) by the aggregator and they can 

perform this remotely [7]. The main focus of our work is to show the DR program implementation 

possibility with the financial benefit analysis in the proposed EWH. Additionally, it is also shown the 

demonstration of the working methodology of the proposed system.   

Designing of an EWH based on DLC program is analyzed in [8]. An automatic DLC program for an 

EWH with overall consumption reduction and cost-effectiveness is determined in [9]. An optimization 

algorithm based on DLC for thermostatically controlled devices is shown in [10]. It describes the optimal 

control schedule and the benefit of the reduced load in the electricity market. A novel real-time water flow 

control approach for EWH in DLC is efficiently presented in [11]. It also describes the demand reduction 

by using thermostat control. 

Our paper describes and analyze the overall consumption for a certain period by using the DLC method, 

total incentives obtained from the aggregator for participation in this program. The comparison between 

the total cost and total cost by using this method is also shows significant financial benefit here. 

The rest of the paper is organized as follow. Section 2 represents the main framework and modeling of the 

system. An overall representation of demonstration is described in Section 3. Section 4 discusses the case 

studies with consumption and financial analysis for different periods of the year. Results analysis is 

included in section 5. Finally, the main conclusions of the paper are discussed in Section 6. 

2. Main Framework & Modeling 

Home appliances modeling is essential to understand demand response control strategy. Physical load 

model can be considered for the case of EWH modeling purpose. An improved physical model of an EWH 

is analyzed here for demand response purpose. The EWH’s parameters are also considered for the analysis 

purpose. The obtained temperature profile shows the significant variations in the different temperature 

scenarios. The heater’s flow chart parameters model is represented in the Fig. 1 below. 

 

 

Fig. 6: Overview of Electric Water Heater parameters. 

The effective control of the residential water heater depends on the accurate prediction of the heater’s 

load and temperature. A previously established thermal model can be used to determine the real-time water 

tanks temperature [12]. This model can be found by using the solution of a differential equation:  
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C = (tank volume).(water density). ( )/ºPC W F , ( )/ /ºG SA R W F= , R is tank thermal resistance 

( 2.º /m F W ), outT is outside tank temperature, inT is incoming water temperature, Q is the input energy as 

a time function (W),  is initial time (hour). For all the known parameters and for any given time, the water 

tank inside temperature can be determined by using this thermal model. If for any case the value of water 

demand ( )DW or input energy ( )Q changes then the initial time ( ) value should be reset to zero [13]. This 

model is used to control the resistor’s ON/OFF status [14]. 

Two different types of node model can be used for the EWH heat transfer process are one-node model 

and two-node model [15]. A uniform temperature is usually considered in the one-node model. The model 

validity can be established by measuring all hot or all cold water of empty or full tank. The heat transfer 

process in here can be modelled by using the first order differential equation:  

( ) ( )- - -  w
elec p w inlet wh amb w w

dT
Q mC T T UA T T C

dt
+ =  (2) 

Here, elecQ  is the resistor heating capacity (BTU/hour), m is the water flow rate (lb/hour),
pC is the 

thermal capacitance (BTU/(lb °F)), wT is the water temperature (°F), inletT  is the inlet water temperature 

(°F), whUA is thermal conductance (BTU/°F/hour) where BTU is British Thermal Unit, ambT  is the room 

temperature (°F), wC is thermal capacitance (BTU/°F). The switching action of the heater can be 

controlled by measuring the actual temperature by any given time which can be calculated by this model. 

The following conditions can be implemented to achieve the set temperature ( w,setT )  [14]:  

1) , , w w set w deadbandIf T T T= + ; The heater turns off. 

2) , , w w set w deadbandIf T T T= − ; The heater turns on. 

For the convenience of this work, the consumption data is considered as input while the obtained reduced 

consumption and financial gain by using the proposed DLC method is considered as output. The overall 

view and main framework of the method is shown in Fig. 2. It consists of five main parts which includes 

several sub parts also. The first part is about the EWH modeling and overall usage profile. The physical 

and thermodynamic model with parameters analysis is described in the modeling part. Usage profiling 

section considers and analyze user consumption pattern. The analysis of user consumption pattern is 

discussed in the usage profiling section.  

 

Fig. 7: The main framework of the DR DLC method. 

DR method proposal, period distribution and incentive plan is explained in the next proposal and 

planning part. In where, DR method proposes the considered DR event program. The distribution period 

discusses the distributed months based on usage pattern for the considered period. In the yearly data, the 

months are distributed by high usage, medium usage and low usage months. Incentive plan can be made by 

the agreement between consumer and aggregator that discusses the total incentive for the consumers. 

Overall consumption and the simulation model are discussed next in the case study part. The result part 

describes the total consumption reduction, total cost reduction and overall financial benefit gained by using 
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the proposed method. Conclusion part describes the concluding points, decision and summary of the 

outcomes of the used method.   

3. Demonstration 

The demonstration of the proposed DR method with input data analysis and output result is discussed in 

this section. The proposed method is implemented and analyzed by using data integration Excel software. 

It is also used to illustrate the produced figures from the outputs. 

 The successful implementation of this method is illustrated in Fig. 3. Three main processes revealed by 

this proposed method are average consumption data (daily) calculation [16], overall average cost 

calculation and total reduced consumption calculation with the analysis of financial benefit. The heater’s 

yearly consumption data is categorized based on the user consumption pattern. 

The overall monthly, daily and hourly consumption profile is divided by using this convenient tool. For 

the data analysis convenience, the months are divided into three different periods are low usage months 

(LUM), medium usage months (MUM) and high usage months (HUM). Then the average daily 

consumption data for each month in each period is obtained by using Excel. The temperature profile of the 

heater is also discussed here. It is important to consider the DR participation of the heater. And it is the only 

parameter that can decide whether consumers can participate in direct load control (DLC) event or not. The 

residential EWH’s monthly data [8] is calculated to obtain the desired output profile. From this data, the 

highest usage days from every month considered to be used in load control model. The model also gives 

the scope to the aggregator to control, change or modify data in order to obtain the desired result. In order 

to calculate the cost and overall financial benefit, real-time electricity price is included in this model. 

Fig. 3 presents the cost calculation with financial analysis. The total cost for normal consumption is 

calculated by using the real time electricity price. The total cost for load-controlled method is also calculated 

then a comparison between both costs is also studied. The model also shows the total reduced consumption 

and the total cost saved by using this method. The proposed method proposes incentive-based tariff for the 

consumer here [17]. The described tool is used to calculate the overall financial benefit in this method. The 

normal power consumption profile and the consumption profile after using DLC method is also shown in 

the Fig. 3. The demonstration of the total cost and the total cost saved by using this program is also depicted 

in the Fig. 3. The result shows that the use of the proposed method is not only beneficial for the consumers 

but also for the aggregators.  The cost difference, consumption difference, incentive achievement, power 

saved by the proposed method and all other related tasks can be obtained by this model too.  

 

Fig. 8: Used interface of the proposed method for DR. 

In the end, the last part allows the user to discuss and analyze the obtained results from the executed 

method. It also gives the scope to the users to consider whether the proposed method with the considered 

incentive plan is suitable or not. The obtained figures, charts and, even the datasheet can be stored for future 



Proceedings of the Fourth DREAM-GO Workshop 

26 

use also. These figures can be used to elaborate the importance of the method and the selection of the period 

for DR scopes.    

4. Case Study & Methodology 

A single element electric water heater’s one-year data is considered for the analysis purpose. The heater 

is taken from our research group (GECAD). It is used approximately by 15 people for daily washing 

purpose only not for taking a shower or other work. The outlet water temperature is measured by a sensor 

what is placed just outside of the water line. In our case, we consider the outlet water temperature as the 

heater’s inlet water temperature. After analyzing the consumption data, it is classified into three different 

periods are High Usage Month (HUM), Medium Usage Month (MUM) and Low Usage Month (LUM). 

The considered months in HUM period are January, March and May; the months in MUM period are July, 

October, November, April and June; the months is LUM period are August, September and February.  

The average daily consumption behavior of the HUM period is represented in the Fig. 4. As we can see 

in the figure that December has the highest consumption which is approximately 422 watts and January has 

the lowest consumption is approximately 418 watts. The calculated consumption cost for this period is 

depicted in the Fig. 5 below. It shows that the highest average daily cost of this period is in December and 

the lowest cost is in March.  

 

Fig. 9: Daily average consumption profile for HUM period. 

 

Fig. 10: Daily average cost for HUM period. 

Fig. 6 shows the heater’s daily average consumption profile for medium usage months. The highest daily 

average consumption for the MUM period is in November which is about 412 watts and lowest average 

consumption is in July is about 400 watts. And, Fig. 7 represents the daily average cost for the same period. 

The highest average daily cost of this period is in November and the lowest is in April.  

 

Fig. 11: Daily average consumption profile for MUM period. 
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Fig. 12: Daily average cost for MUM period. 

Finally, the average daily consumption profile and average cost profile for low usage month is shown in 

the Fig. 8 and Fig. 9 respectively. It has the smallest duration among the proposed periods. From the Fig. 8 

it can be seen that February has the highest average daily consumption where August has the lowest daily 

average consumption in LUM period. 

 

Fig. 13: Daily average consumption profile for LUM period. 

According to the Fig.9, it is obtained that the daily average cost is highest in February but the lowest in 

August as it has the similar pattern in the consumption which is depcited in the previous figure.   

 

Fig. 14: Daily average cost for LUM period. 

During the DR events, it is challenging to keep the temperature in a comfort [18] level. The daily 

temperature profile of the heater is represented in Fig. 10 below. It shows that the consumers temperature 

comfort level is approximately at 40ºC. It is also observed from the figure that the temperature is high 

during summer months. The limitation of the work is that, the measured data is the data of heater’s outlet 

water data so the ambient temperature can be included in this profile too. As a result, it can have some 

faulty data though we are considering the data values are accurate if we ignore ambient temperature effect.  

 

Fig. 15: Daily average temperature profile of the EWH for a year period.  
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In this part, it is discussed the proposed methodology for implementing the load control program to the 

heater. It is also discussed the overall cost calculation method using real-time market price. The initial 

market real-time price scheme is obtained from the Portuguese sector of Iberian Electricity Market 

(MIBEL) (www.omie.es). 

Among different types of existing DR method, incentive-based DR program is considered here [19]. In 

this type of program, customer changes their consumption or stop their consumption for a certain period so 

that peak demand can be reduced. As a result, they can earn some extra financial benefits in their electricity 

bill. It is already mentioned before that direct load control DR program is considered in our work. As a part 

of the incentive program, the DLC method is proposed to apply in six high usage days the HUM period. In 

each of those days five highest consuming hours are selected to use. In MUM period, DLC is proposed to 

apply in five high usage days for four hours in each of those days. And, in LUM period, DLC is proposed 

in two high usage days for five hours in each of those days. The total hours considered to use in the DLC 

control is 250 hours. 

For Incentive program, a daily flat plan is proposed in this work which varies from one period to another. 

For high usage months, the daily incentive is proposed to 5 cents per unit. For the medium usage months, 

the daily incentive is proposed to 3.5 cents per unit. And, for the low usage months, the daily incentive is 

proposed to 1.7 cents per unit. It is a contractual plan and the plan will only be executed if the consumer is 

agreed to control their load in the planned periods.  

5. Results Analysis 

This section describes the obtained results and outputs of the proposed analysis. A comparison between 

the average daily consumption and the average daily consumption after using the proposed DR DLC 

method is described here. The result indicates a significant decrease in the consumption. It is not only able 

to provide demand reduction fascility during peak load time, but also creates the scope to gain financially. 

From the result, it is obtained that the average daily power reduction for every high usage month is 18.86 

W. And, it is a significant amount for residential users. The value is obtained by subtracting to the daily 

average load controlled consumption from the daily average consumption. The daily reduced consumption 

for the medium usage months is approximately 12.20 W. Additionally, there is consumption reduction in 

low usage months though it is not very significant but in an acceptable range. The daily average reduction 

in low usage period is about 6.10 W.   

The total financial gain is also discussed in this section. The daily average can be cost saved by using 

the proposed method for high usage months period is 5.20 cents. And, it makes a significants amount of 

money if consumers accumulate the incentives of all the days of the HUM period together. It is calculated 

by adding the obtained incentive value and the saved value for consumption reduction.  

Fig.11 shows the cost difference between the daily average cost for normal period and daily average cost 

after using the DLC for HUM period. In the figure, the column in red is the daily average normal cost and 

column in green is the cost after DLC. The use of the proposed DR program reduces the electricity cost to 

50% during HUM period. In some special cases, it can be even more.    

 

Fig. 16: Daily average cost difference for HUM period  

The financial gain for medium usage months is described in this part. The daily average cost can be 

saved by using the DLC method for medium usage month is 3.70 cents. And, it is also a good amount of 

money that is considered for the MUM period. This gain includes the proposed obtained incentive value 

and the financial gain from consumption reduction.  

http://www.omie.es/
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Now, Fig.12 shows the cost difference between the normal daily average cost and daily average cost 

after DLC use for medium usage months. In this figure, the column in blue is the daily average normal cost 

and column in orange is the cost after using the DLC. The use of the proposed DR program reduces the 

electricity cost to 40% during this period.   

 

Fig. 17: Daily average cost difference for MUM period. 

Next, the financial gain for lower usage months is discussed. The daily average cost saved by using the 

DLC method for lower usage months period is 1.80 cents. Fig.13 shows the cost difference between the 

daily average cost and daily average cost after DLC use for this period. In this figure the column in yellow 

is daily average normal cost and another column is the cost after DLC. The use of the proposed DR program 

reduces the electricity cost to 20% during this period. 

 

Fig. 18: Daily average cost difference for MUM period. 

The results describe the changes in the consumer’s consumption pattern due to the participation in the 

proposed method. But, these changes do not hamper user comfort level significantly which is on an 

acceptable level. It also analyses the overall reduction in consumption, the financial benefit by incentives 

in reducing electricity bill. This benefit will encourage people to participate in this type of DR program. 

Thus, the complexity in the traditional grid can be reduced too. 

6. Conclusion  

Traditional electrical infrastructure is facing more challenges to balance supply and demand due to the 

increasing penetration and uncertainties of renewable and distributed energy resources. Demand response 

with smart energy management system can help to solve these issues. It plays an important role to support 

the residential energy management system.  

The experiences and findings regarding the considered demand response method are obtained here by 

using the Excel tool. The used tool allows users to analyze an optimized model of the EWH by using the 

consumption profile. It demonstrates the heater’s different models and parameters for analysis purpose. The 

used tool is also capable of doing data analysis, data integration, and graphical analysis. The model and the 

tool are a part and parcel of the proposed work which turns into a successful implementation of the work. 

Additionally, it is a combination of different characteristics with a set of useful programs that helps to 

initiate the proposed model and end up with an event of successful results.  

An aggregated direct load control system for the heater is possible to develop by using the proposed DR 

method. The real-time data of the heater are used for the analysis and DLC method is used for establishing 

the DR purpose. The load controlling method, the incentive benefits and other related task are discussed 

here. A single element water heater’s consumption pattern is discussed here as it is the only existing heater 

of our building. This method can be implemented for dual element water heater or any other heater analysis 

purpose also.  
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The demonstrated model is an essential part of the DR analysis of residential electrical appliances. It 

will enable the users and the aggregators to calculate and understand the use of DR possibility with the 

financial benefit. In the end, the result of the analysis brings fruitful outcomes through the financial benefits. 

This work has a few shortcomings which will be improved in future work.  
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Abstract 

Forecasting energy usage is a challenge that enables power suppliers to address particular behaviors. These 
activities that power suppliers may perform include finding out the customers' behavior in order to adapt their 

prices to their consumption or the intervals at which energy demand will be higher and have planned the 
adjustment of supply chains. To this end, an evaluation should be carried out of the methods that make it possible 
to predict the energy consumption of the future according to the consumption history and other parameters of 

the users themselves. In this paper we discuss the main machine-learning methods for the prediction of power 
consumption using a one-year data set of a shoe store. The revision made it possible to notice that for the data 
set applying Linear Regression and Support Vector Regression a success of 85.7% has been achieved with the 

best results provided. 

Keywords: decision tree, energy forecasting, k-nearest neighbours, linear regression, machine learning, support vector regression, 

random forest 

1. Introduction 

Machine Learning is a scientific discipline in the field of Artificial Intelligence that produces systems 

that automatically learn. Learning in this context involves identifying sophisticated models in huge amounts 

of data. An algorithm that reviews data and is capable of accurately predicting future behaviour is actually 

the machine that learns.  In this context, it implies that such systems are automatically improved over time 

without any human interaction. In the energy field, Machine Learning allows energy traders to predict when 

a consumer will use more power in order to adapt their bills or manage their energy provision. In other 

words, with Machine Learning you can go from being reactive to being proactive [1][2][3]. Historical data 

of all clients, properly structured and processed in blocks, create a database that can be used to predict 

upcoming power consumption, so that they can customize their marketing channels with new prices or 

adjust their supply routes to prevent high energy demand issues, etc. 

This paper presents a survey of the most important learning models of machines used to predict 

electricity demand. In addition, this review will allow us to know which variables have a higher incidence 

in energy consumption [4][5][6]. Firstly, to predict energy consumption before the Smart Grids, to adjust 

the demand, and then to predict the energy consumption of smaller consumers so that it can be established 

whether the energy-saving recommendations made to users, which are based on their own behaviour 

patterns, are effective. 
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The developed system employs a system that implements the machine learning models, as well as the 

auxiliary tasks of data extraction. The main contributions of this paper are summarized as follows: 

• A literature review of the main machine learning models focused on energy usage prediction. 

• A case study in which it has been possible to compare the efficiency of the methods studied. 

This article is organized as follows: section 2 describes the state of the art of machine learning models 

used in energy predictions, Section 3 describes the proposal, and Section 4 presents the results and 

conclusions. 

2. Home Energy Management System Machine Learning Models for Predicting Electrical Energy 

Consumption 

This section details the need to carry out an exhaustive review of the main models of prediction of energy 

consumption, as well as the variables with which these algorithms or models are used, as well as the type 

of systems that use them. In order to achieve the marked goal of showing which machine learning model 

produces the best energy prediction results in a house in this subsection, we will review the literature. 

Linear Regression (LR) is a model that allows to know the relationship between the response variable 

(energy consumption) and the return variables (the other variables). The objective of regression analysis as 

a causal method is to forecast the demand for energy from one or more causes (independent variables), 

which may be, for example, the day of the week, price of energy, presence in housing or other variables. 

Linear regression is a method that is used when a trend in historical forecast data is evident. Due to this, 

and its simple application has been used in numerous works related to the prediction of electricity 

consumption. 

In [7], Bianco et al. made a comparison with the consumption forecasts of other countries, based on 

complex econometric models, such as Markal-Time, demonstrating that the developed regressions are 

consistent with official projections. Other studies, such as the one developed by Mohamed and Bodger [8] 

studied a model for electricity forecasting in New Zealand. The model is based on multiple linear regression 

analysis, considering economic and demographic variables. Saab et al. [9], instead, investigated different 

univariate modelling methodologies to forecast monthly electric energy consumption in Lebanon. These 

studies have shown outstanding results using this statistical model. 

Support Vector Regression (SVR) have been used regularly in the prediction of electrical consumption 

[10], [11]. The SVRs have also been used together with other techniques to obtain better results in terms of 

prediction such as ant colony optimization that serves to perform feature extraction and avoid training with 

a large data set, many of them redundant [12]. Kavaklioglu developed a method based on SVR that allowed 

to predict the consumption of energy in Turkey, for it he first made a model of each variable such as gross 

national product, imports and exports and these models were combined to produce consumption prediction 

values. The data set consisted of thirty-one-year data and the model was able to predict the next six years 

[13]. One of the reference algorithms in terms of making predictions is K-Nearest Neighbors (KNN). This 

algorithm has been widely used due in part to its simplicity and the ease to find similar instances in 

multivariate and large-dimensional feature spaces of arbitrary attribute scales. However, this method, 

insofar as it is limited to identifying past causes of the same dependent variable to coincide with future 

realizations, is not a causal approach to forecasting. Therefore, this method must be complemented with 

temporal information as variables that identify the day of the week, the day within the year or the week 

within the year in a way that facilitates the search in similar neighbors. [14]. This incorporation of temporary 

information will be incorporated in the process of preprocessing the data. This methodology has been used 

in several studies to make predictions of both photovoltaic plants and electricity Price forecasting [15], 

[16]. Random Forests (RF) is another machine learning model widely used to make predictions since parea 

a broad set of data produces a classifier with a great success rate [17]. As in KNN, variables that provide 

temporal value must be used to improve the prediction to be made. One of the studies that has used RF with 

a large percentage of success to make predictions of electricity consumption in the province of Tucumán, 

Argentina is carried out by Diego F. Lizondo et al. [18].  

Gaussian Process Regression (GPR) to powerful machine learning model to perform Bayesian inference 

about functions. GPR is a model whose regression of the Gaussian process is generalized much better, being 

often much better than other regression methods, especially when the availability of sufficient training data 

is a problem [19]. Works such as the one made by Hu & Wang show how, with a set of data that is not 

excessively broad, they achieve more than satisfactory prediction results. These same authors in another 

research work make a comparison between different methods such as ARIMA (Autoregressive Integrated 
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Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine), Decision Tree 

(DT) and LSSVM (Least Square SVM) using a GPR [20][21][22][23]. In this comparison highlights the 

success rate of GPR. 

From the present review of the state of the art, it is clear which are the machine learning models that 

show the best rate of success in varied data sets. From this review it is also extracted which variables are 

suitable to introduce to incorporate temporal information that is very suitable for certain algorithms such 

as KNN or RF. In the proposed system that will allow us to assess which of these models has a higher 

prediction rate for a shoe store data set, a system will be developed that will implement the following 

models LR, KNN, RF, SVR and DT. 

3. Parameter Study for Dataset Training of Machine Learning Models 

To meet the objective of checking which machine learning model has the best percentage of success, the 

system is specifically designed to preprocess the data in the data set and apply the selected models in the 

state of the art. The case study with which the evaluation of the system has been developed has made it 

possible to provide data on energy consumption and the value of other variables used for the evaluation of 

the system that implements the energy consumption prediction algorithms. For the evaluation of machine 

learning models, the system has used a set of data belonging to a shoe store located in Salamanca, Spain. 

The data in the data set belong to the range between 05/01/2016 and 11/12/2018. The data set consists of the 

date, day of week, day of year, week, weekend, Previous day electricity consumption (kWh), electricity 

consumption (kWh), as shown in Error! Reference source not found. 

Table 1: Example of data from the dataset. 

Date Day of week Day of year Week Weekend Prev. day 

electricity 

consumption 

Electricity 

consumption 

2016-01-05 1 5 1 0 26.0950 20.374 

2016-01-06 2 6 1 0 16.1960 12.018 

2016-01-07 3 7 1 0 11.6495 11.281 

2016-01-09 5 9 1 1 11.2080 11.102 

2016-01-09 5 9 1 1 11.2080 11.314 

The data set includes the electricity consumption of the previous day, since a training process was first 

performed without using the data set with this variable and the machine learning models did not yield good 

prediction values.Although there is a natural relationship between the day of the year and the energy 

consumption, the strong variations in the latter due to external causes make this an insufficient predictor, as 

evidenced by the low values of the Pearson correlation index. Pearson correlation that reveals the importance 

of including the variable Previous day, with r = 0.921. To complete this information, the consumption of the 

previous day has been used as an additional attribute, with which there is a clear correlation, as shown in the 

right part of the same figure. Weekends are also important to determine the energy consumption, as shown 

by the conditional distributions. To provide a better representation of the day of the year, it has been linearly 

scaled to the range [0,1], continuously mapping the summer solstice to 1 and winter solstice to 0. 

The present section shows the results obtained in terms of scheduling of the appliances defined by the 

dependency vector and the energy bought from the network. Once prepared the set of data that better 

conditions presents to train the models is necessary to train them so that we can perform the prediction 

processes. Models are built with different methods, using the transformed day of theyear,  the previous day 

energy consumption,  and the business day or weekendcondition.  Actual vs predicted values are shown in 

Fig. 1. 
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Fig. 1: Scatter plots of the actual values vs predicted values of every machine learning model used by the system. 

Table 2 shows quite similar prediction results highlighting Support Vector Regression. However, these 
results can be improved by using a selection of paramenters that are used to enhance the training process. 

Table 2: Machine learning methods score without parameters selection. 

Machine learning method Accuracy 

Random Forest 0.798 

Decision Tree 0.641 

K-Nearest Neighbors 0.843 

Support Vector Regression 0.844 

Linear Regession 0.857 

 

The individual results of each Machine Learning model are shown below using a selection of the 

parameters that produce the best prediction results. In Error! Reference source not found. we can see the 

results of Random Forest 

Table 3 shows the precision results of the machine learning models used, using the method of 

selecting the parameters that produce the best results in the prediction process for each of the models. 

You can see how there is a slight improvement over the method that uses all the parameters in the 

prediction. 

Table 3: Machine learning methods score with the selection of the best parameters to train. 

Machine learning method Accuracy 

Random Forest 0.799 

Decision Tree 0.830 

K-Nearest Neighbors 0.854 

Support Vector Regression 0.857 

Linear Regession 0.857 

4. Conclusions 

This paper has presented a review of the main models of machine learning focused on the prediction of 

energy consumption. Specifically, the models of machine learning that the literature shows that better 

results produce (K-Nearest Neighbors, Linear Regression, Random Forests, Support Vector Regression and 

Decision Tree) have been evaluated. 
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In the case of the study that has allowed the evaluation of machine learning models, daily consumption 

data of a dwelling composed of two people have been used. These data have made it possible to know that 

the LR and SVR has obtained 85.7% accuracy, partly due to the inclusion of the previous day in the training 

process, with Random Forest being the model with the worst result, being 79.9%. However, this comparison 

does not mean that LR and SVR is better than the rest of the models, simply because it fits better the 

variables that make up the dataset (day, weekday, week, presence and so). 

As future work is proposed the expansion of variables to be incorporated into the data set as the outdoor 

temperature, solar radiation on the facade of the building, relative humidity or precipitation measurement 

among others, as well as a comparison against other models of machine learning or statistical methods. 
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Abstract 

With the smart energy management system household residential appliances is able to participate in the demand 

response events. To reduce peak load demand and complexities in the local infrastructure DR can play an 

important role now a days. This paper presents a study and analysis of several papers on residential EWH DR 

modeling and implementation. It shows an overview of analysis of the most used and recent DR models for 

EWH. It also shows the analysis of the used methods to model this and the used approach in several papers. 

Additionally, the discussed consumer comforts and obtainable benefits in several papers by participating in DR 

events is also shown here. The study and analysis in this paper will contribute to the future research and 

encourage the end users to participate in households DR events. 

Keywords: comfort analysis, demand response; model analysis 

1. Introduction 

Smart grid (SG) technology is used to develop the modern energy management system. Now a days the 

focus has been shifted to demand side management (DSM) as the main focus of this is to manage the 

demand load curve by peak shaving, peak shifting and valley filling [1]. In SG, the efficiency and reliability 

can be improved also by delivering energy from the suppliers to the customers with the help of modern 

digital technology [2].  Sufficient grid flexibility and energy efficiency can be provided by the integration 

of SG technology in the building energy management system (BEMS). It is the main motivation to provide 

an efficient and reliable energy system of climate and energy targets 2020 namely “20-20-20” [3].    

DSM is the potential most solution to solve the problems during peak load consumption. For the purpose 

of covering all concepts and methods for energy management system in demand side is covered by DSM 

[4]. There are different types of DSM strategies in controlling domestic EWH.   

In the SG, demand response (DR) mechanism is an important feature for the electricity management. 

The capacity of DR is stated as “the potential for flexible response from end-use appliances across the 

commercial, industrial and residential sectors” [5]. To reduce both total energy consumption and peak 

demand, DR is used as a basic tool by the Independent System Operators (ISOs) in the recent modern 

electricity infrastructure.  It has an important contribution by managing electricity demand in response to 

supply conditions in the smart grid technologies. Time-based rates and incentive-based programs are the 

important features of DR [6].   
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EWH is the largest single consumer of electricity so it is the most suitable appliance to be considered 

for DR events. In the modern grid a significant source of energy consumption is represented by the EWH. 

In the form of a water storage tank it has also built-in thermal storage system inside of it. It has also higher 

nominal power ratings combined with large thermal buffer capacitance that make it well suited for demand 

management. It does not need reactive power support from the grid because the heating element is actually 

a resistor. This special feature makes the heater very flexible and convenient to control the switching 

actions.  

Additionally, the water heating in the heater is easily shiftable in time as it does not impact significantly 

on the user’s comfort. The considerable temperature inside a heater range from very low to a very high 

value (e.g., 40 – 85 ºC). So, it does not interrupt the consumer’s comfort level due to this higher range of 

temperature [7]. 

The rest of the paper is organized as follow. Section 2 represents the different model analysis from 

several papers. Modelling approach or DR approach is described in Section 3. Section 4 discusses the 

consumer comfort analysis from different papers. Finally, the main conclusions of the paper are discussed 

in Section 5. 

2. Different Model Analysis 

There are several models existing in the current electricity management system for demand response of 

EWH. Overall 100 papers were analyzed and studied for this purpose. An Excel work sheet was made to 

analyze the overall models. From the study it is found that Load Model [8], [9], [10] is the most used model 

in the EWH management system. This model discusses the electrical heater load characteristics and 

behaviour in according to the appliance elements. Then the second most used model found in the study is 

the Thermal Model [11], [12], [13]. Thermal model discusses the thermal behaviour of the heater.  

After a brief analysis it is found that Mathematical Model [14], Simulation Model [15], Aggregate model 

[16] and so on comes sequentially after this in the most used model. An overview of the analysed and 

studied model from several papers is shown in the Table 1 below. 

Table 2: An overview of the studied model with reference. 

Reference Paper No. Used Approach 

2. Black-Box Model 

17. Linear Model 

18. Dual Element Model 

19. Dynamic Model 

20. Predictive Model 

21. User Comfort Model 

22. Physical Model 

23. Transient Model 

24. Boiler Profiling Model 

25. Statistical Model 

There are several other interesting models also analysed in our study. For example, Average Illumination 

model, Metrics Model, Stochastic model Non-invasive model and so on.  

3. DR Approach/Modeling Approach Analysis 

The studied models are analysed by using different DR approach to be implemented in the smart energy 

management system. In this section, it was discussed about the studied DR approaches for the DR 

implementation based on the several papers analysis.  

A group of approaches were gathered from several papers and studied in order analyse. From the analysis 

it is found that the most used approach is to Follow Water Temperature [26], [27], [28] of the heater. In this 

approach, the solution is taken based on the water temperature of the heater as it is considered as the main 
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parameter to solve. Then, the second most used approach is Load Control [29], [13], [15]. This approach is 

used to solve for DR of the appliance by controlling the load during peak load or high demand time. 

Then it comes sequentially Load Shifting [30], Load Curtailment [29], Direct Load Control [31] etc is 

in the list of used approach for DR in the studied papers. Load Shifting is used to shift the EWH load, Load 

Curtailment is used to curtail the EWH load and Direct Load Control is used to control the heater remotely 

during the peak demand period. An overview of the analysed and studied approaches from several papers 

is shown in the Table 2 below.  

Table 2: An overview of the analyzed approaches with reference. 

Reference Paper No. Used Approach 

10. Cluster Analysis Method 

32. Linear Optimization 

16. Monte-Carlo 

2. Machine Learning Algorithm 

33. Smart Metering Solution 

34. Artificial Neural Network 

35. Load Scheduling 

36. Dynamic Pricing 

37. Peak Shaving 

14. Parameter Analysis 

There are many other existing DR approaches also studied during this work. Among them the interesting 

approaches are Heuristic Algorithm, Water Temperature Assessment, Mixed-Integer Non Linear 

Programming.  

4. Consumer Comfort Analysis 

This section describes the analysis of consumer comforts based on the study of the used model and DR 

approach from the papers. It also discusses the consumers benefit or convenience for the proposed analysis. 

Water Temperature Profiling [8], [11], [38] is the most found user convenience situation in the studied 

paper. The term means that user can have a clear profile of the water inside the heater. This will help them 

to use the heater according to their needs.  

The second most convenience found from the analysis is Peak Load Reduction [30], [39], [40]. This 

term means that by using the proposed method in the referenced paper, peak load can be reduced so that it 

can fulfill the DR conditions. The other comforts and user convenient terms are found like Low 

Computational Complexity [15], Performance Analysis [41] and Pricing Knowledge [30]. An overview of 

the analysed and studied user comfort from several papers is shown in the Table 3 below. 

Table 3: An overview of the analyzed user comforts and benefits with reference. 

Reference Paper No. User Comforts/Benefits 

13. Usage Prediction 

42. Power Management 

28. Cost Minimization 

30. Financial Benefit 

12. Energy Consumption Reduction 

18. Thermal Comfort 

43. Optimal Control 

21. Payback Effect Decreasing 

22. Parameters Identification 

24. Efficient Energy 



Proceedings of the Fourth DREAM-GO Workshop 

40 

With the above mentioned user comforts and benefits there are other benefits and comforts for end users 

found during the analysis also. Among those the most important options are Load Extraction, Smart 

Interface, Energy calculation, Energy savings etc.   

5. Conclusions 

The main challenge in the traditional electrical infrastructure and management system is to balance 

demand and supply during peak demand time. The complexity is also growing because of the increasing 

penetration and uncertainties of the renewable and distributed energy resources. Residential household 

appliances have a great influence in the peak load increase among the local grid. To solve this issue smart 

energy management system and demand response can take part in the electricity management.  

Among the several residential appliances, electrical water heater is considered to analysis in this paper. 

It includes the study of the used models in several papers, the approach to model this is for DR purpose and 

at the end the benefits or comforts analysis for the users.    

This study reveals that there are several models are very convenient to use, implement and execute to 

perform DR for residential heater. This will show a pathway for the researchers to work on EWH in future 

and choose the right models for their work. Also, it discusses the used convenient approaches to solve this 

and model this. An overview of the user comfort and benefit analysis is also shown which will encourage 

the consumers to make participation in households demand response.   
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Abstract 

The increment of the electricity consumption around the world has led many efforts on the network operators 

to reduce the consumption in the demand side and encourage to increase the use of renewable energies. Since 

the buildings have a significant part in energy consumption, and lighting systems have an important role in the 

energy consumption of the buildings, the optimization of the lighting system should be effective. Hence, the focus 

of this paper is to minimize the lamps consumption of a residential house based on electricity price and try to 

take advantages from photovoltaic generation as much as possible. The methodology of this work is proposed 

as a linear optimization problem that manages the generation of a renewable energy resource, which supplies a 

part of the energy consumption of the house. For the case studies, the amount of the renewable energy 

generation, total consumption of building, consumption of the lights, and electricity price are considered. 

Keywords: optimization, renewable energy photovoltaic 

1. Introduction 

Nowadays, the increment of electricity usage has become to a big global concern [1]. The environmental 

problems, such as global warming, and CO2 emissions have drawn the attention to the Renewable Energy 

Resources (RER) and optimization strategies [2]. A significant part of electricity consumption is dedicated 

to all type of buildings including commercial, residential, and industrial [3]. Currently the demand of RERs 

and Demand Response (DR) programs are increasing [4]. In the DR programs, consumers are emboldened 

to change their electricity consumption pattern based on the variation of electricity price, or technical 

commands from the network operators [5]. DR programs can be classified into two main incentive-based 

and price-based. Real-Time Pricing (RTP), Time-Of-Use (TOU), and Critical-Peak Pricing (CPP) are 

included in the price-based programs [6]. 

Due to environmental problems that have occurred aftermath of increasing electricity generation from 

fossil fuels, the attentions were drawn to the renewable energies [7]. Portugal also has investments on 

distributed generations and renewable energy. Recently in Portugal, the consumers are able to utilize the 

Renewable Energy Resources (RERs), consuming their own produced energy. In the past, they should inject 

all the generated power to the utility grid and pay for their consumption. However, with the new rules, the 

end-users are encouraged to consume their own produced energy [8].  
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In order to implement the DR programs in a building, the lighting system plays an important role. The 

lights are considered as dynamic and flexible loads somehow their consumption can be reduced or 

interrupted [9] [10]. 

However, the main purpose of this paper is to minimize the Electricity Bill (EB) of a residential house 

with optimizing the lamps consumption and interference of RERs, specially a Photovoltaic (PV) system 

that supplies part of power demand of the building. The lighting system of the building should be 

controllable for reducing the illumination. The system may consist several laboratorial and commercial 

equipment and instruments, such as several Programmable Logic Controllers (PLCs) and several energy 

meters that these technical issues are out of scope of this paper. 

This paper is proposed in five sections. After this introductory section, the system description is 

presented in Section 2. Section 3 demonstrates the case study surveyed in this paper considering two 

different scenarios, and the obtained results are described in the Section 4. Finally, the conclusions of this 

work are presented in Section 5. 

2. System Description 

The proposed system regarding the optimization of lamps consumption in the residential house is based 

on the electricity price variation and PV generation during a day. In this way, the consumption reduction 

for each lamp is limited, and since any room should not lose its light completely, a minimum value of light 

for each lamp, have been considered. The residents of the house can define their preference for each lamp 

as numbers between 0 and 1 that show which lamp is more important or less.  

The optimization algorithm that is used in this paper is started with definition of input data including 

generation of the PV, total consumption of the building, electricity price, and the detail of the total 

consumption of the lighting system. Algorithm needs a set point price to decide for optimizing. This set 

point can be defined by residences or can be calculated as the average price by algorithm.  After checking 

the input data and conditions such as set point price and PV generation, if the desired condition is met, the 

optimization process is not required and should check the values again and again as long as the system is 

in the high consumption level or expensive price periods. Then, the program starts to optimize the 

consumption of the lamps to fulfill the system goal. Each lamp of the building has a priority based on its 

location and user preferences. After that, the required power reduction of whole lighting system, the 

maximum consumption reduction of each lamp, and the minimum required light intensity of each room are 

defined as several constraints for the proposed optimization problem. 

This optimization algorithm is modeled as a linear problem which can be solved by software which has 

LP solver environment.  

The objective function of the optimization problem is as in eq. (1): 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑃(𝑙,𝑡)  × 𝐶(𝑡)

𝐿

𝑙=1

𝑇

𝑡=1

× 𝑃𝑅(𝑙) 

∀ 𝑡 ∈ {1, … , 𝑇} 

∀ 𝑙 ∈ {1, … , 𝐿} 

(1) 

P is the power consumption of each lamp in each time period. C is the electricity cost in each time 

period.  PR is the abbreviation of Priority of each lamp. L and T represent the total number of lamps and 

time periods, respectively. The model constraints are as in eq. (2)-(4): 

 

∑ 𝑃(𝑙) = 𝑅𝑅

𝐿

𝑙=1

 

∀ 𝑙 ∈  {1, … , 𝐿} 

 

(2) 
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 0 ≤  𝑃(𝑙,𝑡)  ≤  𝑀𝑅 

∀ 𝑙 ∈  {1, … , 𝐿} 

∀ 𝑡 ∈  {1, … , 𝑇} 

(3) 

 0 ≤  𝑃𝑅(𝑙)  ≤ 1 

∀ 𝑙 ∈ {1, … , 𝐿} (4) 

RR stands for Required consumption Reduction, and MR is abbreviation of Maximum consumption 

Reduction that is considered for each lamp for avoiding turning off any lamp completely. As it can be seen 

in Eq. 4, corresponded PR for each lamp is a number between 0, and 1. The lamps with priority numbers 

close to 0 are the lower important lamps than lamp with priority number close to 1. It should be noted that 

the lamps that are considered for lighting system are able to be reduced. 

3. Case Study 

This section represents the case study used for verifying the proposed optimization methodology. As it 

was mentioned, the main purpose of this paper is to optimize the consumption of the lamps of a residential 

house, based on the electricity price variation. The considered house consists of three bed rooms, one living 

room, one kitchen, and two bathrooms, and the corridor. The overall map of the house can be seen in Fig.1. 

According to Fig.1, there are 10 reducible lamps in the house with 100 W maximum power consumption. 

Regarding the RERs, there is a PV system located at the top roof of the building, which supplies a part of 

the consumption of the building. The maximum capacity of PV generation is 4 KW. 

 

Fig. 1: Plan of the house and the lighting system. 

If all the lights are turned on with the maximum intensity, the maximum consumption of lighting system 

in this house will be 1000 W. The total power consumption of the building, the power consumption of 

lighting system, and PV generation are shown in Fig. 2. This consumption profile refers to a daily profile 

in summer.  

 

Fig. 2: Consumption and generation profile considered for case study. 
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As one can see in Fig. 2, the blue line indicates the part of the building consumption that belongs to the 

lighting system. As it is clear in Fig. 2, there are several moments that not only the PV generation (Green 

Columns) supplies the entire electricity demand of the building, but also the excess of the produced power 

can be injected to the utility grid, or store in energy storage if exist. 

The electricity prices that are used for this study are the market prices for a summer day in 2018 and 

have been adapted from Portuguese sector of Iberian Electricity Markets [11]. The optimization algorithm 

checks the electricity price in each moment in order to calculate the set point price to make decision for 

running the optimization.  

It is obvious that in the periods of day that PV generation can supply the electricity consumption 

completely, there is no need to reduce the lamps consumption despite the high electricity cost.   

4. Results 

This section represents the obtained results of proposed methodology. The consumption reduction of 

lighting system can be seen in Fig. 3. Also, the electricity prices are shown on Fig. 4. 

 

Fig. 3: Consumption and cost comparison between before and after optimization. 

 

Fig. 4: The daily electricity price of a residential building. 

As it can be seen in Fig.3, the lamps consumption is reduced in the expensive prices such as 11 am, and 

12 am, or from 4 pm to 11 pm. There is no power reduction in some periods such as 1 pm to 3 pm which 

PV generation is enough for supporting the house consumption, despite the expensive electricity price. As 

a last result, Table 1 illustrates the effect of optimization in the energy bill of the building for one day.  

As it can be seen in Table 1, the optimization process leads to reduce the energy cost of the house in one 

day from 0.506 EUR to 0.29 EUR, by respecting to the user’s preferences. 
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Table 3: Accumulated costs comparison before and after the optimization (EUR). 

Periods 
Before 

Optimization 

After 

Optimization 
Periods 

Before 

Optimization 

After 

Optimization 

1 0.012 0.012 13 0.127 0.127 

2 0.012 0.012 14 0.137 0.132 

3 0.012 0.012 15 0.147 0.137 

4 0.012 0.012 16 0.197 0.157 

5 0.012 0.012 17 0.251 0.175 

6 0.012 0.012 18 0.305 0.193 

7 0.018 0.018 19 0.359 0.211 

8 0.024 0.024 20 0.404 0.229 

9 0.024 0.024 21 0.449 0.247 

10 0.024 0.024 22 0.476 0.265 

11 0.051 0.051 23 0.492 0.281 

12 0.087 0.087 24 0.506 0.295 

5. Conclusions 

In this paper, an optimization algorithm has been proposed for a residential house. This algorithm 

considered real-time pricing schemes and optimize the consumption of lighting system of a house in the 

periods that electricity price is greater than a specific value. The main purpose of the paper was to optimize 

the power consumption and reduce energy bill with take advantages of renewable energy resources. The 

presented model can be solved via several software with a linear programming solver environment. 
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Abstract 

Center pivor systems are widely used to suppress the irrigation needs of agricultural fields. In this article, we 

propose an autonomous to improve the low efficiency of this method of irrigation, developing a system based on 

the water requirement of the plantation, through field data (local temperature, local wind, soil moisture and 

precipitation forecast) and soil evapotranspiration calculation. The stored information will allow to calculate 

the real evapotranspiration, not being necessary to restrict to lysometric measures. Accordingly, it is possible to 

schedule the irrigation for the period in which it has the lowest cost, considering the energy produced locally 

and the price of energy bought in the main market. Irrigation must be carried out within the time interval in 

which the plantation does not reach the wilding point, so it will be carried out at the time of the lowest cost. 

Keywords: agricultural irrigation, smart farming, water requirements, water resource scheduling 

1. Introduction 

The need for irrigation management has become relevant in many regions, specifically in Mediterranean, 

as result in the water resources are limited, changes in the climatic conditions and the negative effect of 

human behaviour on the environment. 

The purpose of the irrigation is to give to plants the proper amount of water to guarantee their necessity. 

Requirement of water in irrigation system is very important, and the new irrigation methods should 

implement in such a manner that requires less water consumption when compare to old technologies. Smart 

irrigation means not only consuming less water it also provides water supply to optimize crop production. 

For optimum yield, soil water in the crop root-zone must be maintained between desirable upper and 

lower limits of plant available water. Proper irrigation management will help prevent economic losses (yield 

quantity and quality) caused by over or underirrigation (plants should not pass the wilting point). The 

objective of irrigation management is to establish a proper timing and amount of irrigation for greatest 

effectiveness. 

The measurements performed by the proposed system, in monitoring the soil moisture and the precise 

calculation of the evapotranspiration of the plantation have a significant advantage in terms of energy and 

water consumption. Real-time information on the current parameters of the system (soil moisture, 

evapotranspiration, precipitation) allows scheduling irrigation for the period in which it presents the lowest 

cost. 

2. Literature Review 

In this section, we first introduce central pivot irrigation systems, and then the related work is discussed. 
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2.1 Center-pivot systems 

 

Fig. 19: Basic components of a center pivot (CP) system. 

In agricultural fields, the intention to reach the maximum yield of the crop with the minimum operational 

costs has evolved consciously. One of the methods developed that improves the efficiency of the use of 

water, as well the use of energy is the irrigation by sprinkler with a system of center pivot (CP). 

In Fig. 1, it is possible to visualize a CP in which equipment rotates around a pivot, in a circular path, 

and crops are watered with sprinklers as the machine moves [1].  

2.2 Related Works 

In [2], [3] a soil moisture sensor is used to water pumping the plantation when the minimum moisture 

level is verified, in addition [4] the system also incorporate solar photovoltaic is not only environmental 

friendly; it is also contribute to the improvement in power quality and enhance the reliability of the power 

systems [5], [6]. A Center pivot irrigation optimization to reduce the crop water necessity [7], [1] is 

proposed based on undergrounds sensors, and in [7] a multi depth sensors approach is tested to monitor 

soil. The evapotranspiration method to calculate the water requirements is proved in [8]. A approach for 

water irrigation scheduling is presented [9], which provides planning of the daily irrigation but not consider 

the minimum price of the energy bought from the main network. 

The dynamic irrigation low limit method [10], which considers the parameters relates with crop growth 

and development time and water supply to settle the irrigation low limit. Four solutions of smart irrigation 

software are explained in [11], where is explored data obtained from different sensors. 

3. Crop Water Necessity 

To estimate the period and the adequate amount to irrigate the field, it is necessary to calculate accurately 

the evapotranspiration of the plantation.  

The FAO Penman-Monteith method (1) is used to estimate the potential evapotranspiration (ET0) and 

the evapo-transpiration of the crop (ETc), which takes into account the stage of vegetative growth of the 

crop by weighting the potential evapotranspiration by the coefficient Kc. [8] 

𝑬𝑻𝟎 =
𝟎. 𝟒𝟎𝟖∆(𝑹𝒏 − 𝑮) + 𝜸

𝟗𝟎𝟎
𝑻 + 𝟐𝟕𝟑

𝑼𝟐(𝒆𝒔 − 𝒆𝒂)

∆ + 𝜸(𝟏 + 𝟎. 𝟑𝟒𝑼𝟐)    
 

  

          (1) 
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ET0 

Rn 

G 

T 

U2 

es 

ea 

es-ea 

∆ 

γ 

reference evapotransporation [mm.day-1]; 

net radiation at the crop surface [MJ.m-2.day-1]; 

soil heat flux density [MJ.m-2.day-1]; 

air temperature at 2m height [ºC]; 

wind speed at 2m height [m.s-1]; 

actual vapour pressure[kPa]; 

actual vapour pressure [kPa]; 

saturation vapour pressure deficit [kPa]; 

slope vapour pressure curve [kPa.ºC-1]; 

psychrometric constant [kPa ºC-1]. 

The calculation of ETc (2) is the product of ET0 and Kc, where kc is determined from the type, growth 

length of the crop and selects the corresponding coefficients Kc. 

𝑬𝑻𝒄 = 𝑬𝑻𝟎 ∗ 𝑲𝒄 
  

          (2) 

 

ETc 

ET0 

Kc 

 

crop evapotransporation [mm.day-1]; 

reference evapotransporation [mm.day-1]; 

single crop coefficient. 

 

 

4. Proposed system 

The circular irrigation infrastructure demonstrated in Fig. 2, introduces multiple zones of the agricultural 

field, in which we can have different plantations or plants of the same type but in different stages of growth. 

The system considers the irrigation need for each zone and acts on the speed of the infrastructure motor and 

valve motor of the water pumping, if it is necessary to irrigate the area in which the infrastructure is located. 

 

Fig. 20: The areas considered (a, b, c and d) may have distinct plantations. 

It is calculated how many hours are left until the level of soil moisture is below the limit established for 

the plantation of the different zones, considering the evapotranspiration of each zone and the precipitation 

forecast. 

In this way it is possible to obtain a daily schedule of irrigation for a given area considering the local 

energy production, the market price of energy and the restrictions of the logistic operation, in order to 

optimize the use of water and minimize the cost of energy purchased from the main market. 
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5. Conclusions 

Real-time monitoring of agriculture has become indispensable and is a tool for obtaining data that are 

important for the development of energy efficiency systems. Therefore, the present methodology intends 

to take advantage of this information not only to minimize the use of water, but also to minimize the energy 

cost of the irrigation system's electrical installation. 
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Abstract 

The consumer concept is shaping up as the grid is improving to a smart way. Moving from an actor with little 

information about what was happening in the energy market, to player with an active and important role in its 

management. The term prosumer will revolutionize the way the electrical system operates. The possibility of the 

participation of distributed small-scale energy resources in the network infrastructure changes the current 

management model. The authors propose a model that optimally associates all concepts. Scheduling, aggregation 

and compensation are the main phases that compose this model. In this paper, the author focusses only on the 

second, being the main goal compare between being a consumer, a producer or a prosumer in this method. In 

this way, two partitional clustering methods were used, testing different k clusters. 

Keywords: aggregation, clustering, market, prosumers, smart grid 

1. Introduction 

The era of smart grids has revolutionized the energy market and opens the door to new players. In this 

context, one of the main objectives is to move from a formerly centralized model to a more decentralized 

paradigm, allowing the participation of Distributed Energy Resources, [1]. In this way, the consumer 

concept can be updated according to this new change. This introduced the prosumer – making a combo 

between the consumer, storage and local level generator capabilities. Through the Smart Grids, there is the 

possibility of participation in the small-scale production market, enabling this new consumer, which now 

may have the possibility to produce its own energy. With this ability, doesn‘t need to request anything from 

the network and may also, in some cases, sell the excess. Most of them rely on, for example, solar energy 

sources, through photovoltaic panels, [2].  

There are several benefits associated with this change for a smarter grid: reliability increase, carbon 

footprint reduction, increase in revenue and decrease in consumer energy expenses. However, the current 

transportation and distribution system is not ready for a successful implementation and hence there is still 

a long way to go. Right now, the grid presents challenges in terms of design, operation, control, energy 

storage technologies integration and regulatory issues. It is necessary to update and apply new Information 

and Communication Technologies so that the system can flow correctly and reliably, [3]. Overcoming these 

difficulties, prosumers and small-scale production will be allowed to make electrical and economic 

transactions in so-called local electricity markets (also known to micro-markets by some authors). They 

can feed consumers belonging to the local community, reducing, for example, transport losses, [4]. 
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In this paper, the authors suggest a way of integrating these local and small-scale markets into the energy 

market through aggregation with clustering methods. This is the development of previous work, [5]. Thus, 

one of the main objectives will be to compare the benefit of being prosumer in this type of model: consumers 

and producers will be separately aggregated and then as prosumers. Throughout this paper two types of 

clustering methods and various k cluster will be tested. 

The first section presents a brief introduction to the main topic addressed throughout this 

paper: prosumers. Next, the approach by which the authors decided to invest and the proposed model is 

described. The third section presents the case study and the fourth section the results coming from it, as 

well as its analysis. Finally, it presents the conclusion of the studied subject. 

2. Approach 

As discussed in the previous section, this paper deals with the development of previous work. In this 

section, the proposed model is presented in order to situate the reader in the context in which this article is 

developed. Therefore, the Fig. 1 presents an overview of the model, highlighting the part in which this work 

focuses. The three main phases are presented and then a general description of what the purpose of each of 

them will be presented. 

 

Fig. 21: Overview of the proposed methodology for this paper. 

In the infrastructure of the electrical system, the aggregator may play a crucial role. This methodology 

presents the proposal of the authors of how it may be linked to the tasks belonging to the market of this 

sector. 

First, the model proposes that an optimization should be made to schedule all the resources associated 

with a particular aggregator, in an optimal way - these resources may be small scale distributed production 

units, consumers that can be part of demand response programs and suppliers. Only if small-scale resources 

fail to supply the demand, the suppliers will be used. The input parameters for this optimization may, for 

example, consider the price elasticity of demand, the possibilities of direct control of the load or even the 

production of either heat or electricity. The objective function is to minimize operating costs from the 

Virtual Power Player (VPP) point of view and, in addition, to fairly remunerate all resources that are 

aggregated and actively participate in community management. In this way, price and operating restrictions 

are considered in this optimization as well as operational restrictions imposed by the VPP in order to achieve 

its objectives 

Finishing the optimization, the second phase of the model imposes itself - aggregation of resources. The 

definition of groups is performed taking into account the results obtained previously. By grouping these 

small resources, the VPP will be able to enter the market with a considerable amount of energy. With this, 

it will also allow the entry, in a more direct way, of this type of consumers / producers in the transactions 

of the market. 
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In this paper, the authors chose to use a clustering method that is one of the most famous of unsupervised 

machine learning when it comes to partitioning – kmeans. The model created by Hartigan-Wong in 1979 

defined one of the possible variations for this method. The total variation within a cluster is then taken to 

the sum of the squares of Euclidean distance between a point and the center of the cluster, and then assigns 

the point to the nearest cluster, [8]. This study was carried out using software R. 

In the end of this paper, the authors propose to compare the results obtained for kmeans with another 

clustering method belonging to partitioning – Partitioning Around Medoids (PAM). PAM is a method that 

looks for objects to represent a cluster – medoid. At each iteration, it is considered the exchange of the 

current medoid by a non-medoid in the case of some improvement. The criteria of the objective function - 

the minimization of the sum of the dissimilarities of all objects relative to the nearest medoid, [6]. However, 

PAM has a disadvantage relative to larger datasets. The problem of finding relatively small clusters in the 

presence of large clusters in the data set is a difficulty for this method. In the case of databases being greater 

than thousands of observations, Clustering Large Applications (CLARA) is an extension of this method to 

deal with this type of problems, [7]. 

Regarding the last phase of the model, the remuneration step, after aggregation, resources will be 

rewarded by continued collaboration with the aggregator. This phase serves as a motivation and as a 

advertising for new potential candidates for the aggregation. Through the cooperation of all resources, the 

management of network operation flows optimally. 

3. Case Study 

In this section it is detailed the case study that will be studied throughout this paper. The objective is to 

apply the second phase of the presented model - aggregation, to a data base constituted by 100 consumers 

and 100 producers. With the introduction of the concept of prosumers, the authors include it in this study. 

In this way, and with the existing players in the database, the hypothesis of each of them was tested to form 

a prosumer. Thus, in the end, the aggregation of 100 prosumers will be tested. 

This database was provided by the company Discovergy, which through its smart meters can obtain 

different types of information, important for this type of study, from its clients. In this paper, only the energy 

consumed and produced were used. For each of the elements of the database, there is data with intervals of 

3 minutes. In this paper, the authors opted to use 175 210 values of those collected in order to provide the 

method with a high set of elements. 

4. Results 

This section presents the results obtained by applying the model proposed to the case study presented 

previously. In a first phase, the idea would be to compare different k clusters through the kmeans clustering 

method. At Fig. 22 the results for the aggregation of consumers are presented. To aggregate this type of 

player, the values of energy consumed (kWh) were used by each of the 100 consumers studied for a total 

of 175 201 periods (with intervals of 3 minutes).  

 

Fig. 22: Consumers – Results from clustering method kmeans for different k clusters. 
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Table 4: Consumers – Detailed results from clustering method kmeans for different k clusters 

 k=3 k=4 k=5 k=6 

Group1 16 9 63 45 

Group2 83 1 8 2 

Group3 1 31 1 18 

Group4 0 59 26 1 

Group5 0 0 2 13 

Group6 0 0 0 21 

Through the analysis of the Fig. 22 e da Table 1, for k = 3, the method agglomerated most of the 

consumers in Group 2. Regarding k = 4, the group that led the previous test was divided into Group 3 and 

Group 4, the latter group with most of the elements. Already in k = 5, the 63 elements that form Group 1 

were also in the referred groups. Finally, at k = 6, the elements are more dispersed, emphasizing that the 

Consumer 25 has been kept in a separate group in all tests performed. 

Turning to the analysis of the Producers, the logic was the same as that presented previously with the 

Consumers database. Together, the Fig. 23 e a Table 5 present the results from the aggregation of the 

elements from the database with 100 producers. 

 

Fig. 23: Producers – Results from clustering method kmeans for different k clusters. 

Table 5: Producers – Detailed results from clustering method kmeans for different k clusters. 

 k=3 k=4 k=5 k=6 

Group1 91 5 4 54 

Group2 5 4 4 4 

Group3 4 65 29 18 

Group4 0 26 59 4 

Group5 0 0 4 4 

Group6 0 0 0 16 

The information in Fig. 23 and Table 5, shows that for k = 3, this method chose to join most of the 

Producers, 91 elements in 100, in a group. Although in k = 4, these same elements form groups 3 and 4. 

Moving to k = 5, 3 of the 5 groups are formed by 4 elements. Finally, for k = 6, Group 3 and Group 6 are 

formed mostly by elements formerly belonging to Group 3 in k = 5. 

Moving on to the analysis of the prosumers, this new player was formed through the junction of the 

Producers and consumers previously studied. Again, following the aforementioned logic, we tested the 
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kmeans clustering method for different k clusters. Like the figures and tables presented above, the Fig. 1 e 

a Table 6 show the results obtained for the aggregation carried out. 

 

Fig. 24: Prosumers – Results from clustering method kmeans for different k clusters. 

Table 6: Prosumers – Detailed results from clustering method kmeans for different k clusters. 

 k=3 k=4 k=5 k=6 

Group1 13 4 39 4 

Group2 7 29 4 4 

Group3 80 62 50 9 

Group4 0 5 4 3 

Group5 0 0 3 55 

Group6 0 0 0 25 

After examining and comparing with the previous results we can verify that, as in the case of the 

Consumers in k = 3, the group consisting of the majority of the elements has about 80. This groups are 

rather similar since 66 of the 80 elements are the same that belong to Group 1 of the Consumers. In k = 4, 

we can see similarities in the case of Producers. It should be noted that two of the groups have the same 

elements: Group 1 corresponds to Group 2 of Producers and Group 4 corresponds to Group 1 of Producers. 

At k = 5 and k = 6, the similarity continues between this Prosumers test and the Producers test. 

It was also decided to test another method of clustering. In this paper, the selected method was CLARA, 

an extension of PAM, and it was compared for a k cluster - in this case we chose k = 6, with the method 

used before, kmeans. Considering the two methods belonging to Partitioning Clustering, the authors found 

this final comparison interesting.  

Table 7: Comparison between two clustering methods. 

 Consumer Producer Prosumer 

 CLARA kmeans CLARA kmeans CLARA kmeans 

Group1 43 45 32 54 25 4 

Group2 22 2 55 4 39 4 

Group3 10 18 5 18 1 9 

Group4 18 1 1 4 28 3 

Group5 6 13 3 4 3 55 

Group6 1 21 4 16 4 25 

According to the results presented in the Table 7, for Consumers the groups are similar, differing only 

in a very small number of elements. Concerning Producers and Prosumers, the differences are more 

noticeable. 
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5. Conclusions 

The concept of smart grids revolutionized the electrical system and with the introduction of new concepts 

the level of complication of the management became higher. The possibility of distributed resources to 

actively participate allows the creation of the concept of prosumers – consumers with the possibility of 

producing and even selling their own energy. The authors suggest a methodology to manage these new 

players more efficiently - through aggregation methods. By associating them optimally, it will be easier to 

enter the market and then, according to the model proposed, remunerate the resources in accordance with 

their cooperation to better manage the operation of the network. This paper focuses on the aggregation 

phase, comparing different clusters and two different methods. 
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Abstract 

Nowadays electricity system is looking for innovation in its role. New approaches are being able to discuss because 

of several issues as environmental, costs, quality and reliability of the electric energy production. In this paper one 

more aggregation’s scheme for demand response will be proposed. Based on National Grid’s programs that 

already exist in the market which will be shown on the current paper. This paper will be a support for a master 

thesis in electrical engineering based on the same topic. 

Keywords: aggregation models, demand response, market. 

1. Introduction 

Market liberalization isn’t a new approach in Europe anymore, even looking for a retailer or wholesale 

market. The meaning of this paper is an approach on demand response models regarding to UK’s programs. 

To improve system’s reliability, quality and reduce price for the end consumer, according with, [1]–[9], 

renewables energies has been installed. Managing this production is not an easy task due to renewable 

production hasn’t an accurate forecast during short term. In fact, within one timescale day solar and wind 

productions can quickly change, due to weather conditions.  

The meaning of flexibility, according with [2], is how consumers can change their profile’s consumptions 

without including or removing elements of the manufacturing process (in factories’ cases), so flexibility 

means the ability of changing consumption regarding to outside system’s inputs to adapt itself to a better 

profile. 

In renewable production’s cases is necessary a more accurate balancing system. To balance the system, 

loads most be more flexible to shift consumption for demand response instructions, according with [2] and 

[3]. Both describes how a consumer can be more flexible in a manufacturing enterprise and its importance 

for the system and factory’s sustainability improvement.  

In [7], it shows how a provider can be flexible in a microgrid regarding to renewables productions. 

Providers most adapt consumption or production according with energy price (electric and natural gas), 

renewable production, demand requirements and storage. Regarding for the optimum point between energy 

purchase, production and consumption during one year of analyses.  

According with [10], there are three types of aggregators. First, production aggregator, responsible to 

group small generators to access the market; Demand Aggregator, intermediate retailers or distribution 

companies and consumers with production and/or storage capability; and Commercial Aggregator, response 
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to balance energy supply and buy locally generation electricity. Those aggregations types are important to 

handle with system’s balance and economics issues.  

In UK during 2001 the New Electricity Trading Arrangements (NETA) were installed. The big difference 

between old system and NETA is that while in first one the cost of system’s balance was divided by everyone 

who were connected in electricity system, in NETA the cost of balancing is within the market, making 

providers get paid to improve system’s balance. (Now the) system is not like an electricity pool anymore 

where market used to change energy and money ignoring technical requirements of balance and operations. 

Demand response in this new system can improve, technically, quality, reducing costs and open a new 

market with providers, aggregators and retailers. 

To provide demand response is necessary to be in a pretty regulated market because there are several 

technical details that system must obey and financial requirements that are important for system’s operations 

reliability. Thus, many entities are studying models to improve demand response. Firstly, models were just 

for the biggest loads on grid, in order to provide large scale. As    consequence, most consumers couldn’t be 

able to provide demand response. In order to solve this problem of provider’s constrains, aggregation models 

in all parts of the world were getting importance to be implemented in the electric system.  

The most important thing in this aggregation approach is to improve response reliability and increase 

power response in different sites of the distribution grid (and not just transmission system). with an aggregator 

providing DR’s management smaller consumer can start to enter in the market of balance and production of 

energy in distributed energy resources cases. 

2. UK programs 

Table 8 Shows four demand response programs found in UK [11]–[13]. Those programs have some 

differences between each other in terms of response time, quantity, reduction or increase load and main 

meaning for the system.  

Fast Reserve provides rapid and reliable energy delivery when it’s needed by the system, in this case it 

improves system’s reliability for a short timescale. 

Table 8: National Grid’s DR programs. 

Fast Reserve STOR DTU FFR 

Requirements: Requirements: Requirements Requirements 

Delivery in 2 minutes after 

ordering. 

Deliver at least 3 MW over a 

period of 20 minutes. 
Minimum power of 1 MW. 

Operational meter that 

switches loads. 

Delivery rate greater than 25 

MW / minute. 

Provide for 240 minutes 

(continuously 2h). 

Aggregates equal to or 

greater than 0.1 MW each. 
At least 1 MW of response. 

At least 15 minutes of cutting 

or production. 

Instruction recovery in 1200 

min. 

Energy counter with by 

minute-by-minute or half-

hourly. 

Aggregation, communicate 

by only one site with the OS. 

Deliver at least 50 MW. 
availability three times a 

week. 

Only e-mail access for 

instruction. 

Communication with an 

automatic control device. 

Fees: Fees: Fees: Fees: 

Availability [Pounds / hour] 

Remuneration for being 

ready to provide the service. 

Availability [Pounds / hour] 

Remuneration for being ready 

to provide the service. 

Availability [Pounds / 

hour] Fixed drive demand. 

Availability [Pounds / 

hour] Provision for delivery. 

Nominal [Pounds / hour] 

Reserve utilization in the 

available window. 

Utilization [Pounds / hour] 

By capped energy in the 

available window. 

Utilization [Pounds / hour] 

Fixed and optional demand. 

Initialization of window 

[pounds / window] 

Payment for the windows in 

which they are requested. 

Utilization [Pounds / MWh] 

By capped energy in the 

available window. 

Optional [Pounds / hour] 

By limiting power outside the 

available window. 

- - 
Utilization [Pounds / hour] 

Use when requested. 

- - 
Services 

Committed and flexible 
- - 

Window Review [Pounds / 

hour] For calls outside the 

contracted window. 

- - - - - - 

Energy response [Pounds / 

MWh]. 

Energy provider delivered. 
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The meaning of STOR is to provide extra power to help manage actual demand on the system being greater 

than forecast or unforeseen generation unavailability.  

Demand Turn Up (DTU) is used to manage renewables energy resources. When the renewable 

production’s level is high, and the consumption is low is necessary to use this energy in a useful way to hold 

system’s balance. Then DTU is used for this type of balance situations. 

Firm Frequency Response (FFR) gives for the provider and SO (System Operator) an alternative route to 

the market, necessary for the price uncertainty. In this program providers can be in available in the same time 

in another kind of DR’s program and system’s frequency is improved.  

A simple brief of those programs is presented on Table 8 with some technical requirements and types of 

payments to provide each program.  

3. New proposed model 

Is proposed a new model of remuneration and penalties regarding for an aggregation communication 

between provider and aggregator. This new model has been implemented in a computational simulation with 

twenty providers managed by one aggregator.  

Firstly, is necessary to contract providers in a tender process. In this part, each provider agrees with an 

aggregator the response information, on which most contain all data of available response. Including: Contract 

Power (CM), normally in MW for large-scale providers; Response Time, is the time that each provider can 

maintain continuously the contracted power; availability and utilization’s fee; maximum permissible error, 

it’s maximum error in delivered power that the provider can fail. If provider deliver less than maximum error, 

it’s considered as deliver failure and it won’t be remunerated in the current settlement period. Else it’s 

considered success but by this percentage will reduce availability and utilization payments. 

 

Fig. 25: Contract flowchart. 

Fig. 26 presents how providers are dispatched. To provide is proposed a time before the event’s beginning 

to do a communication between provider and aggregator to improve response’s reliability and to bring more 

flexibility to providers in different event’s situations. 

Firstly, in Fig. 26Error! Reference source not found. the aggregator consults all providers about how 

much they can provide in the next event. “Treply” is the reply time to providers send an answer to aggregator 

about how much they accept to provider (provider’s reply variance is set in the initial contract); “Tanalyze” 

is the aggregator’s time to analyze all possibilities between providers to reduce load, in that time he calculates 

the optimum dispatch looking to utilization fee, power available and power needed to reduce; Notification is 

the moment that the aggregator sends a signal to each provider be dispatched, in that moment they will receive 

the information about how much power they have to provide, how long and the exactly time.  

Ramp up and down can be done however providers prefer due to the only requirement is that after event 

time and before event end the delivered power most be the instructed power by aggregator. 
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Fig. 26: Event Timeline. 

Fig. 27 shows a flowchart describing how aggregator’s communication works between all providers and 

acceptance conditions. In the first part aggregator send the first signal, which has response time data with 

reduction time, event date and power required. All providers have it as input and they analyze according with 

their respectively issues. After this period, fixed by contract within any settlement periods times, providers 

reply to aggregator an output with the valuer of power and time that they accept to provide.   

 

Fig. 27: Aggregation’s consultation and providers’ offer. 

4. Payments  

To calculate providers’ remuneration this model presents two simple types, called: Availability and 

utilization payment. Both were inspired in STOR.  

First payment scheme is shown in Fig. 28 as availability payment, this flowchart demonstrates all possible 

situations for each settlement period. 

 Where, in Fig. 4, the first stage is a failure ask, if in the current settlement period it have failed. If it has 

the current won’t be remunerated. Weather not, it sums all previous failures and increase MP in 1% for each 

failure (the maximum MP can be negotiated between them). After calculate MP, Rb (Base remuneration, 

called availability) is done according with contracted data presented in Fig. 1. 
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Fig. 28: Availability payment scheme. 

Secondly, proper utilization remuneration is shown in the flowchart (Fig. 29). 

 

Fig. 29: Utilization payment scheme. 

For Fig. 29 its calculations will be done in the event time (red colour in Fig. 26) and stops in the event 

ends (second red color).  

Base load means how much power it was consuming moments before the event. The average between the 

current time of the notification (instruction) and three last consumptions values, one for each settlement 

period. Those four values are used as base load to the next steps. 

Expected energy is how much it should be providing in the current event and delivered energy is how 

much it’s really providing for the system. Calculated by base load less measured in the current SP. Showing 

how much it’s reduction of power comparing with the previous load (Base Load). 
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Finally, capped energy is the minimum between expected and delivered energies. Weather it’s providing 

more than expected it will be remunerated by the expected. Otherwise it will be remunerated by how much it 

is really providing.  

According with capped energy is applied utilization fee to calculate how much money it will receive for 

the current SP. 

Total remuneration is the sum of availability and utilization’s payment. 

5. Case Study  

To validate the proposed model a simulation has been done. Using a university campus as one group of 

providers, where each building represents one provider with its own consumption’s profile.  

During one consumption year, all providers are considered able for demand response in the high load 

periods of the day, according with [14], it’s shown in Table 9.  

Table 9: Peak of electric system’s load. 

Winter 

(29/out – 26/mar) 

Summer 

(26/mar – 29/out) 

Time  

(Peak/Not peak) 

9am – 10:30am 10:30am – 1pm Peak 

6pm – 8:30pm 7:30pm – 9pm Peak 

Those times are used to instruct providers along one year for demand response analyses. Is chosen these 

periods of event because they represent the biggest consumption period in Portugal, according with [14]. 

Table 10: Maximum interruptible power of each provider. 

Provider 1 2 3 4 5 6 7 8 9 10 

Power  

[kW] 
0.391 0.35 0.436 1.98 1.724 0.562 0.196 1.236 3.564 1.493 

Provider 11 12 13 14 15 16 17 18 19 20 

Power  

[kW] 

2.156 0.715 3.65 1.119 0.929 0.424 1.383 1.283 0.629 1.02E-

02 

Table 10 shows how much power providers can dispatch within a reduction event as related in Table 9. 

This level of power comes from each providers average between the higher hours of their consumption. Due 

to reliable measurement and uncertain about consumers reducible profile is taken as maximum reducible load 

90% of the average between 12:30pm and 3pm consumption of each one.  

Table 11: Aggregator’s notification. 

Provider 1 2 3 4 5 6 7 8 9 10 

Power  

[kW] 

0,704 0,630 0,914 5,352 3,103 1,011 0,353 2,810 6,414 2,687 

Provider 11 12 13 14 15 16 17 18 19 20 

Power  

[kW] 

3,881 1,287 6,569 2,504 2,029 0,888 3,220 2,938 1,132 0,031 

  Required by SO 

[KW]: 
48,457 

      

Table 11 shows how much power each provider is dispatched after aggregator’s optimization, regarding 

to minimizes costs and provide required power by SO. In this case the optimum is found using Dual-Simplex 
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as a deterministic exact optimization approach, which isn’t useful for a bigger case study, due to its low 

converge velocity comparing with other optimizations approaches as found in [2], [5]–[7] and [9]. 

Simulated one year of demand response with those twenty providers, one aggregator and the System 

Operator to produce profit with demand response.  

 

Fig. 30: Aggregation’s result. 

Fig. 30 shows how much SO most to pay for the system balancing after one year reducing loads in the high 

energy consumption’s moments.  

All providers will be remunerated by €20713.00 as showed before but in this valuer isn’t includes costs of 

implementation of any device or other possible cost that can be made by adhering the program. Aggregator 

will be remunerated as the difference between SO’s Bill and Providers’ profit, due to SO pays to the 

aggregator and aggregator pays to providers.  

6. Conclusion  

This model is a new approach to manage demand response with aggregation. It’s an important role to 

improve links between small providers of renewable energies and/or demand response with the electricity 

market, where is needed more purchase power to deal with that environment. 

Its validation has been done in a simple way so the second step for future works is simulate with real time 

load to measure power reduction with real devices to control the system’s response. Loads most have a real 

reducible power with a useful machine (for example, heating, cooling, elevators, light controlling, etc…) can 

be changeable examples for demand response applied in real terms. 
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Abstract 

Multi-agent systems are widely used tools to simulate and study the energy sector because of their distributed 

architecture. There are several simulator tools available in literature, however, much of these prove to be very 

domain specific. The emergence of the Tools Control Center tool allows these simulators to cooperate in order 

to solve more comprehensive problems and more complex scenarios. This paper presents a module of this tool 

known as Demand Response Registration Digital, which allows the study of the model and programs of Demand 

Response. To understand the operation of this module, an example is given considering a wind curtailment 

scenario. 

Keywords: demand response, energy resources management, multi-agent simulation, real-time simulation, semantic interoperability, 
smart gridIntroduction 

1. Introduction 

Achieving an increasingly clean and sustainable energy policy are the main objectives of the European 

Union for the coming years. To make this possible, the EU has set targets that will significantly change the 

behavior of electric power systems, as well as the role of participating entities. These targets are aimed at 

reducing greenhouse gas emissions, increasing the use of energy from renewable sources and increasing 

energy efficiency [1]. 

With the growth in the use of renewable energy sources, especially with Distributed Generation, network 

management has become a much more complex task due to its impact on the grid. Although it has great 

advantages such as reduced cost of on-peak operation, reduced losses, and increased quality of service, the 

unpredictable nature of this type of power source makes network balance and reliability a challenge. This 

way, it is necessary to find efficient mechanisms for the study of these systems that allow to detect failures, 

to plan the energy management and even to find more efficient models [2][3]. In this sense, the simulation 

tools have a great importance, since its versatility allows to support the diverse activities of the sector, from 

the operation of the network, to the final consumer [4]. In the literature can be found several simulators for 

the various areas of energy systems. Some examples are Eurostag [5], OMNeT ++ [6], MOCES [7], DRSim 

[8], GridLAB-D [9], among others. In addition to these, there are also several simulators that are based on 

multi-agent technology, which is particularly well adapted due to its distributed nature, such as EMCAS 

[10], MAN-REM [11], MASCEM [12], Power TAC [13], SGiC [14], AiD-EM [15], among others works. 

Although there is a wide range of simulators in the area of energy systems, they have a major 

disadvantage: they are geared towards solving problems in specific areas of the industry, such as energy 

markets, network management, etc. To carry out studies closer to reality, where all areas are related, it is 

desirable that the different simulators from different areas are be able to talk in a way to simulate more 
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comprehensive and complex scenarios with all their dynamicity. Although there are already simulators that 

try to interconnect the different areas of energy systems, such as EPOCHS [16], GECO [17] and Mosaik 

[18], they do not have the ability to dynamically construct scenarios for simulation, i.e., the user can not set 

up a scenario that does not has been pre-established. 

The Tools Control Center framework (TOOCC) has been designed with the aim of filling the gap and 

thus allows the interoperability between heterogeneous simulation systems, by combining the simulation 

capabilities of each tool to be linked, allowing to simulate and analyze more comprehensive and complex 

scenarios. TOOCC allows the creation of scenarios with information on electricity markets, SG operation, 

modeling of concepts such as consumer, aggregator, pricing, real-time pricing, demand response programs, 

among others. 

This paper intends to present the D2RD module of TOOCC, developed to model and simulate DR 

scenarios, considering consumers, producers, tariffs, real-time pricing, supply energy and DR programs. 

For its demonstration, the simulation of a real-time pricing scenario for wind curtailment with 6 consumers 

is described. 

After this first introductory section, the TOOCC framework and D2RD module will be presented in 

Section 2. Section 3 shows a practical example how to use these tools and their features. Finally, Section 4 

will present the main conclusions of this work. 

2. Tools Control Center 

The TOOCC framework [19] is a stand-alone multi-agent system that allows to take advantage of the 

strategic integration of other simulation tools. To this end, TOOCC acts as a facilitator in the integration of 

heterogeneous systems, using them as subsystems in the simulation of scenarios that consider different 

areas of energy systems. In the integration between systems, ontologies are used which allow the mapping 

of concepts and their relations. In addition, it is also possible to define the models that consider the 

necessary parameters, and run them on different machines in the domain, taking advantage of their features 

and installed software. At the end of the simulation are presented the results of each execution, allowing 

the user to draw conclusions and make decisions.  

 

Fig. 31: Global perspective of TOOCC framework. 

As can be seen in the Fig. 31, the tool is executed in three phases: model definition, simulation and 

results analysis. To fill the models can be considered simulated or real data, derived from a wide variety of 

sensors, consumers, production units and tariffs. The models are designed according to the tools that will 

be used in the simulation. For the simulation, more or less systems and/or algorithms may be included, 

depending on the complexity of the problem. The tools with which TOOCC connects for the purpose of 

executing the simulation are: the Intelligence and Decision Support Multi-agent System (IDeS) that allows 

the execution of different DR optimization, scheduling, forecasting, and decision support algorithms; Multi-

Agent Simulator for Competitive Electricity Markets (MASCEM), which performs simulation of electricity 

markets; Adaptive Decision Support for Electricity Market Negotiation (AiD-EM), which provides 

decision support to participating players in electricity market negotiations; Network Manager (NM) is a 

system that allows to simulate the network manager, analyzing the satisfaction of consumer needs and 

network balance; Facility Manager (FM), which simulates energy management within a facility, managing 

current-connected devices such as home appliances; and Programmable Logic Controller Multi-Agent 

System (PLCMAS), which allows to simulate the results obtained in real environment, represented in a 

laboratory. These tools can communicate through the use of ontologies, which allow the mapping of the 

concepts between inputs and outputs, ensuring that different systems are able to understand the same 

concepts, and avoiding different interpretations of the same information. These ontologies are public and 

can be consulted in [20]. 
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2.1 Demand Response Registration Digital 

Demand Response Registration Digital (D2RD) is a TOOCC module designed to study and simulate DR 

programs and models. The models were developed according to the characteristics of the markets for 

electricity and smart grids and what is expected to be their evolution, by defining a set of characteristics. 

These are composed of information about participating entities (ISOs, curtailment service providers, and 

aggregators, including VPPs, and consumers of several types); the ways that can be used for their interaction 

in short and real-time DR events and the required technologic means; and DR contracts and consumer 

remuneration methodologies [21]. 

The graphical interface developed for this module allows consumers to register the expected 

consumption, flexibility and envisaged incentives prices for each moment, which later, together with the 

information of other consumers, allow to manage the DR using the available programs (Fig. 32). In the end, 

the network energy is optimized according to the needs of all consumers, avoiding waste and taking 

advantage of lower prices from the energy market. 

 

Fig. 32: D2RD module general perspective. 

An architectural perspective of the module is represented in Fig. 33. The diagram shows the interaction 

of the several components for register the consumers information, such as the other entities, and simulate 

demand response models. 

 

Fig. 33: Architecture model representation of D2RD module. 

The framework takes advantage of the use of real tariffs and real-time pricing. When the model is 

prepared, the demand response manager can execute the demand response algorithm, and then proceed to 

the simulation in real-time in a laboratory which is able to simulate a house and its appliances. In this way, 

it is possible to analyze the impact of different entities and models in demand response management. 

3. Real-Time Pricing for Wind Curtailment Example 

In the present section, a case study will be presented for an real-time pricing for wind curtailment 

scenario, already used in [22]. To this end, 6 consumers will be registered. In their registration they should 

indicate to the manager of the DR their flexibility to increase or decrease power, at each instant of time. 

This information will be processed by a demand response manager who will distribute the energy in the 

appropriate way, considering the fluctuations in the energy price. Those results will be launched in OPAL-

Simulink simulation, in a real environment [23]. 
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Once all the constituent features of the scenario have been set up, the next step is the real-time simulation 

of the data. For this purpose, OP5600 real-time simulator has been used, which is a powerful Hardware-In-

the-Loop (HIL) machine able to integrate the simulation environments with the real world. OP5600 can run 

MATLAB/Simulink models in real-time for controlling the real hardware resources and obtaining the actual 

results.  

The TOOCC platform has been connected to the OP5600 via MODBUS TCP/IP protocol for exchanging 

the data, as figure illustrates. In fact, the main purpose of this integration is firstly to perform the 

optimization algorithm for TOOCC user data, and then execute the optimized results in the real hardware 

resources. 

 

Fig. 34: TOOCC plataform integrated with real-time simulator. 

As it can be seen in Fig. 34, the TOOCC platform starts the simulation by transmitting the input data to 

the DR Provider algorithm to perform the optimization, and the optimized consumption and generation data 

is sent to the OP5600. After that, the real-time simulator employs the MATLAB/Simulink model embedded 

in the machine and execute it in real-time.  In other words, OP5600 sends controlling commands to the real 

hardware resources and receives the real-time consumption/generation of them. In the last stage, OP5600 

transmits these real-time data to the TOOCC platform in order to be displayed as a chart to the user. In this 

process, the real-time market prices are also considered. 

The used optimization algorithm is developed with the objective of operate distribution network and 

manage the available resources, by maximizing the social welfare. This considers the values of the demand 

forecast and of the demand increase and the respective prices (initial price and price reduction), for each 

consumer, of each type. The distributed generation resources (as the case of wind power generation), are 

divided into ordinary (ODG) and prioritary (PDG). The prioritary ones regard the resources that should be 

entirely used, as the case of non-dispatchable energy generation resources that are not storable. Otherwise, 

a cost (curtailment cost) is paid due to the generation curtailment. The energy acquired from the upstream 

network from one or several suppliers is divided into a quantity previously obtained (from Supplier Sp) at 

a given price, and an additional amount available at a distinct price. The objective function is presented in 

equation (1). 

 

(1) 
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Fig. 35 shows the results of real-time simulation using TOOCC platform and several laboratory 

consumers and generators. These results are for 96 periods of 10 seconds (960 seconds in total), which 

means OP5600 transmits the desired rate of consumption/generation to the resources for each 10 seconds, 

and the resources send their real-time consumption/generation rates to the OP5600 with 1 second time 

interval.  

The first chart in Fig. 35 is related to the consumption profile of a community of consumers (known as 

Consumer 2 in the TOOCC), and the second and last charts are related to the laboratory emulators that have 

been employed by OP5600 for emulating the consumption of generation profile of a customer. 

 

Fig. 35: Real-time simualtion results. 

4.  Conclusions 

There are several advantages and challenges that the DG's implementation brings to the energy sector. 

To address some of these challenges, simulation tools, especially multi-agent architecture, are essential for 

its evolutionary process. However, much of the state-of-the-art tools are designed to solve problems in very 

specific domains, losing the essence of an industry where all areas are interconnected with a high level of 

complexity. In this context, the TOOCC tool emerges, which allows the interconnection of different 

systems in order to solve problems that cover the various domains of energy systems. 

This paper presents the D2RD module of TOOCC. The D2RD module allows the study of DR models 

and programs through the consumers’ registration of flexibility, expected consumption, and envisaged costs 

for using such flexibility. This is important information that can be managed by different entities, namely 

network managers, in order to manage the available energy and the needs of its consumers, avoiding waste 

and taking advantage of fluctuating market prices, reducing costs. 

To better understand the operation of the module and its advantages is presented an example of a wind 

curtailment scenario, where are demonstrated some features; the steps necessary for the user to use the tool; 

and how to interpret the results. 
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Abstract 

The use of demand response programs and distributed renewable energy resources play an important role in 

nowadays electricity markets. Most of the demand response programs are performed for large-scale resources. 

This is a barrier for the small and medium scale consumers, producers, and prosumers in order to participate 

in the electricity market negotiations. To overcome this barrier, a third-party entity, such as community or an 

aggregator, should play a role an intermediate player between the end-users and network operators. However, 

before the implementation of the business models, they should be well surveyed in term of economic and financial 

profits in order to prevent future problems. This paper proposes an economic survey on a community of the 

consumers and distributed generations, considering different pricing schemes. The community consists of 

residential, commercial, and industrial consumers as well as photovoltaic and wind turbines. In this survey, the 

annual costs of this community are investigated considering the current pricing schemes in two countries of 

Portugal and Germany. 

Keywords: aggregator, community, demand response, distributed generation 

1. Introduction 

The appearance of Demand Response (DR) programs in nowadays power system, create an opportunity 

for the research society to focus on this topic. DR programs can be defined as altering the consumption 

profiles of the end-users in order to react to the price variations due to the economic or technical issues [1]. 

Two main categories are considered for DR programs, which electricity customers can participate in the 

programs considered on those categories [2]:  price-based and incentive based. In fact, DR programs bring 

flexibility to the electricity markets by controlling the consumption patterns [3]. 

Furthermore, the use of Distributed Renewable Energy Resources (DRERs), especially wind turbines 

and Photovoltaic (PV), enables power distribution network to reduce the congestion of network on the peak 

hours as well as full benefits from them while participating in the market negotiations [4].  

The main issue in these new concepts is the minimum capacity rate that the resources should contain, in 

order to be able to participate in the market negotiations. Based on [5]–[7], the minimum reduction capacity 

of DR resources is 100 kW in different electricity markets. Therefore, the small and medium resources 

would not be capable to individually participate in those markets [8]. For solving such problems, a third-

party entity, such as a community or an aggregator should be placed between the demand side and the grid 

side in order to aggregate the small and medium scale resources and participate them as one resource in the 

electricity market [9][10]. However, all the models and scenarios should be well investigated in term of 

economic and financial profits in order to prevent the future problem. 
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This paper presents an economic survey on a community of consumers, producers, and prosumers by 

considering different electricity pricing rates. The consumers participated in this community consist of 

residential buildings, commercial centers, and industrial units. Also, the DRERs of the community include 

PV pilots in two scale of small and large, PV arrays in the residential buildings considered as prosumers, 

and several wind turbines. The consumption and generation profiles utilized in this paper are real data 

provided by a smart metering company in Germany (www.discovergy.com). Several pricing schemes 

would be applied to this community in order to survey the annual costs considering DRERs.  

After this first introductory section, the community model will be presented in Section 2. Section 3 will 

present the economic survey of the community and the annual costs will be provided. Finally, Section 4 

will present the main conclusions of this work. 

2. Community Model 

A local community grid is related to a group of consumers, producers, and prosumers that some of them 

may have a contract with a central controller unit called Community Manager (CM), in order to be 

controlled and organized by this unit. The differences between a community and an aggregator are that a 

community has a smaller number of grid players, however, an aggregator has a significant number of 

players. Also, the community is interest based, however, the aggregator is profit based.  

Fig. 1 illustrates an overall view of the proposed community grid. In this model, there are 100 consumers 

and 100 producers. The consumers of the community consist of 79 residential houses, 16 commercial shops, 

3 commercial centers, and 2 industrial units. The producers include 22 small-scale PV pilots, 13 large-scale 

PV pilots, 18 wind turbines, and 47 PV arrays in residential houses considered as 47 prosumers. These 

classifications are performed based on the average daily consumption/generation rates of the resources.  

 

Fig. 36: Overall perspective of the community model. 

In this network, the CM is not owning any resources of the grid and it is responsible to balance the rate 

of consumption and generation in the community members, by providing some strategic plans, namely DR 

programs or resource scheduling, to the players. The main interest of CM is firstly to feed the demand of 

the players by its local energy resources available in the community as well as the surplus of production of 

the prosumers. By this way, the CM would be able to stop purchasing energy from an external supplier. 

Also, if the generation rate of the community is less than the electricity consumption, it is affordable for 

the CM to pay incentives to its members to reduce their consumption instead of buying energy from the 

market. For this purpose, the CM is able to perform DR programs in order to be applied by the consumers 

and prosumers. 

Fig. 2 shows the total consumption and generation profiles considered for the community network. The 

data shown on Fig. 2 are the real consumption and generation data for an entire year with three minutes 

time interval, which have been adapted from the smart metering company in Germany (Discovergy GmbH).  

http://www.discovergy.com/
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Fig. 2: Total consumption and generation profiles considered for the community. 

As can be seen in Fig. 2, the generation rate in summer is much higher than in the winter, which is due 

to the high generation rate of PV pilots. Since the rate of consumption is almost equal during the year, the 

CM not only is able to supply the community demand via the local resources but also, it can export energy 

to the external supplier during the summer. Detailed consumption profiles of the community are shown by 

Fig. 3, which are related to residential houses, commercial shops. Commercial centers, and industrial units. 

 

Fig. 3: Consumption profile of the community players: (A) 79 residential houses, (B) 3 commercial centers, (C) 16 

commercial shops, (D) 2 industrial units. 

As it is clear in Fig. 3, the consumption profile of residential houses is a bit lower in summer comparing 

to the winter. This is due to the geographical areas and weather conditions. Also, in the same figure, the 

profile of commercial buildings in the working hours is higher than the nights. These points would be useful 

for the CM in order to perform DR programs or loads scheduling. The profiles shown in Fig. 2 and 3, will 

be used in the next section in order to compare and analyze the annual costs of the community. 
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3. Economic Analysis 

In this section, it is considered that the community is in two countries in Europe: Portugal and Germany. 

Therefore, the electricity prices and regulation of these two countries would be applied in the community 

and the results will be compared. 

The first analysis is given to the annual costs of the community with the Portuguese electricity prices. 

Therefore, the electricity price for consumption has been adapted from [11], which is 0.15 EUR/kWh. Also, 

the price of electricity generation has been adapted from [12], which stands as 0.09 EUR/kWh. Fig. 4 shows 

the calculated annual costs for Portugal. 

 

Fig. 4: Accumulated costs of the community for one year with Portuguese prices. 

Furthermore, Table 1 demonstrates the detailed accumulated consumption costs for the different sectors 

of the community while it operates with Portuguese prices. 

Table 12: Accumulated consumption costs of community with Portuguese electricity prices. 

 

Consumers Producers 

Residential 

Houses 

Commercial 

Centres 

Commercial 

Shops 

Industrial 

Units 

PV and wind 

turbines 

Cost (M€) 
54.6 24.2 9.6 5.4 64.5 

Total: 93.8 Total: 64.5  

Regarding the community costs with Germany electricity prices, Fig. 5 and Table 2 demonstrate the 

economic analysis. In those results, the electricity price for consumption has been adapted from [13], which 

stands for 0.25 EUR/kWh, and the generation costs adapted from [14] stands for 0.09 EUR/kWh.  

 

Fig. 5: Accumulated costs of the community for one year with prices in Germany. 

Table 2: Accumulated consumption costs of community with German electricity prices. 

 

Consumers Producers 

Residential 

Houses 

Commercial 

Centres 

Commercial 

Shops 

Industrial 

Units 

PV and wind 

turbines 

Cost (M€) 
97.7 10.1 28.1 23.5 116.1 

Total: 159.4 Total: 116.1  
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4. Conclusions 

This paper provides a community model of the consumers and producers considering several players. 

The community players consist of residential houses, commercial buildings, and industrial units. Moreover, 

an economic survey on the annual costs of the community was performed. The consumption and generation 

data were the real data adapted from a smart metering company in Germany.  

The results of the paper illustrate a comparison between the consumption and generation costs for an 

entire year while the pricing schemes of the two countries in Europe are applied. These kinds of analysis 

are very useful for network operators and community managers in order to identify the best and optimal 

situations for performing demand response programs and loads scheduling. 
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Abstract 

The production of hydroelectric power is strongly affected due to periods of drought. In Portugal there are about 

forty-nine hydroelectric plants with installed capacity of more than 10MW. In the year 2017 the generation of 

electricity in Portugal was 54.52 TWh, of which about 14% was hydroelectric production reflecting a year below 

normal in hydroelectric power production. This article discusses the impact of drought periods on hydroelectric 

power production in Portugal, which address the importance of hydroelectric production in Portugal. Among 

the factors influencing the production of hydroelectric power, a method is presented for analysis of a dry month 

through the monthly precipitation indicators, energy production by monthly technology and energy price. These 

indicators were presented and analyzed in three case studies presented in this article. A solution is also presented 

to reduce the impact of drought periods on Hydro production. 

Keywords: importance of hydro power, hydroelectric generation, hydro power, power generation 

1. Introduction 

The hydroelectricity is a 100% renewable energy based on water energy and kinetic energy of water, 

taking advantage of an infinite resource obtained from nature. The main objective of this article is to focus 

on the impact of drought on the production of hydroelectric power in Portugal, so as to raise the awareness 

of the academic population and even the general population about the importance of renewable energies, 

especially the vital role of hydroelectricity in production of electricity [1]. Currently, although hydroelectric 

power has been increasing gradually, the national utilization potential is only around 50%. 

Just because, compared to other European Community countries, Portugal is well below the European 

average, in some cases as France, Germany and Italy, around 90%. In order to be aware of the importance 

and impact that this type of energy has, Hydropower, which includes hydroelectricity, represents 28% of 

the installed electricity power in Portugal, more than Wind (22%), than Coal (11%) and then Natural Gas 

(18%) [2]. Hydroelectricity plays a key role in the electricity market because it has many advantages such 

as a rapid and efficient response to the variations of the demand and consequently an adjustment in 

production, in the price of electricity produced is constant and has a high reliability of service, enabling a 

supply of constant energy, among other advantages [3]. 

As mentioned previously, the main objective of this article is to focus on the impact of drought on 

hydroelectric production in Portugal in 2017, in an extremely dry year and to verify the impact of drought 

on energy production in general, to verify that was offset the lack of water production and lastly to analyze 

the variation of the electric energy price. The same analyzes were carried out for the years 2016 and 2015 

in order to have a possible comparison. In section II we speech about factors that influence the production 
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of hydroelectric energy, in section III we explain the study methodology, in section IV we present the case 

study’s in section V we do a conclusion of this paper. 

2. Factors that Influence the Production of Hydroelectric Energy 

The Hydroelectricity production has a great advantage when compared to the production of wind power, 

that is highly irregular and unpredictable. One of the major factors that influencing hydroelectricity are the 

periods of drought, due to lack of precipitation and inability to store water in dams that have reservoirs. In 

the year of 2017, Portugal recorded a fall in the production of hydroelectric energy, around 55%, due to the 

drought that the country was experiencing [4]. There are many factors that together have led to this dry 

period, such as high temperature, little rainfall and not enough water in the rivers to be able to produce 

energy and consequently the pumping barrages could not perform this process to not destroy the flora rivers 

and to protect all living things in rivers. 

This set of factors led to an extreme drop in water production that Portugal tried to compensate with 

wind energy, but like this irregular and unpredictable was not enough and had to compensate the lack of 

hydropower through fossil fuel power stations such as coal and natural gas. In sum, in Portugal water 

production fell by 55% to 7,200 GWh in 2017 while natural gas production increased by 53% (8,029 GWh) 

and coal production increased by 27% (16,847 GWh). 

3. Study Methodology 

The method used in the cases studies is represented in Block Diagram in Fig. 1. The (1) will be the 

starting point, (2) will be the definition of the month that is the variable "M", and the variable "X" will take 

the values less than or equal to 6 before the variable "M ", and the (3) will make a relation between the 

precipitation occurred for that same month to verify if the month can be considered dry, in case the 

precipitation is less than 40% of the value said normal for that same month is considered dry and the 

program proceeds, otherwise a matrix with the data of the months analyzed with the indicators of energy 

produced by monthly energy and monthly energy price is printed in the step (5). 

 

Fig. 37: Base of the applied method. 
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In the case of a valid relation, it follows the step (4) where the analysis of the driest month is performed, 

thus defining the variable "D" and the following month, thus defining the variable "D+1", analyzing the 

precipitation indicators monthly and will perform step (5) by extracting the matrix with the indicators data, 

monthly precipitation, energy production per monthly technology and monthly energy price and indicating 

the driest month and the following month, the method will proceed to the step (6) by incrementing the "M 

= M+1" function to analyze the months following the month defined in step (1) for the variable "M". Will 

proceed to step (3) and create a loop until to stop the method. It is recommended that variable "X" take 

value less than or equal to 6 to be correlated with month "M", because if month "M" is December 2000 and 

"X" take values greater than 6, in the month January 2000 may it has rained a lot and in the following 

months and only in August was it has become a dry height, this will influence the December analysis in 

relation to energy production data and market price. The analysis of the data of the months closest to the 

variable "M" will make the analysis more precise and concrete. 

4. Case Study 

Based on the method presented previously in Fig. 1, in the case studies we performed an analysis of 

monthly rainfall data, energy production per monthly technology and energy price to verify the impact that 

the dry periods have on the Portuguese market and how this behaves with little or no availability of 

hydroelectric production. Therefore, three case studies were performed: 

• The first will be between December 2017 and October 2017, the latter being considered the driest 

month of the last six months, consequently the month of November 2017 will be considered the 

following month. Finally, a comparison will be made between these months and the month of March 

2018, which is considered a rainy month. 

• The second case study will be between the month of December 2016 and July 2016, the latter 

considered the driest month on the last nine months, consequently the month of August 2016 that is 

the following month. Finally, a comparison will be made between these months and the month of 

February 2017 that is considered a rainy month. 

• The third case study will be between the month of December 2015 and July 2015, the latter 

considered the driest month on the last twelve months, consequently will be analyzed the month of 

August 2015 considered the following month. Finally, a comparison between these months and the 

month of January 2016 that is considered a rainy month. 

The Table 1 shows the values assigned to the variables according to the basis of the applied method. 

Table 1: Values assigned to variables. 

Variables Case A Case B Case C 

M December 2017 December 2016 December 2015 

X 6 months 9 months 12 months 

D October 2017 July 2016 July 2015 

D+1 November 2017 August 2016 August 2015 

A. Dec 2017 

▪ Precipitation data: 

According to Table 1, our chosen month "M" is the month of December 2017. When we begin to execute 

our method, the month of October is the variable "D" since it is the month where the current amount of 

precipitation is the lowest as we shown in the Table above. Consequently, the variable "D+1" will be 

represented by the month of November 2017. Like we see in above in the Table 2, the month of October 

assumes the variable “D” (being less than 40% of the normal value for that month), according to the method 

implemented. On the other hand, and with the course of the method, and knowing that we increase the 

function "M = M+1" to analyze the months following the month defined by the variable "M", we verify 

that the month of March can also assume the variable “D”, but in this case to take over as the month very 

rainy.
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Table 2: Precipitation values of case A (Built with data from [5]). 

Year 2017 

October 24,4 92,5 Lower 

November 43,2 118 Lower 

December 116,2 129,8 Near 

October 24,4 92,5 Lower 

Year 2018 

January 63,4 126,8 Lower 

February 74,9 112,2 Lower 

March 259,2 93,5 Higher 

January 63,4 126,8 Lower 

Looking at IPMA data, we observed that the month of October was the hottest of the last 87 years for 

October, when 2 heat waves ran occurred from 1 to 16 and from 23 to 30 October, which covered a large 

part of the territory continent, and the total rainfall in October was about 30% below of normal, being 

considered the driest of the last 20 years with an average value of precipitation of 26.9 mm, which correlates 

with the implementation of our method [6]. Consulting also the same data, but this time for the month of 

March 2018, in Continental Portugal was considered an extremely rainy and very cold month. The average 

value of the amount of precipitation in March was about 4 times the monthly average value and it was 

considered the second rainier month of March since 1931 which correlates with our method [7]. 

▪ Production Mix Statistics: 

 

Fig. 38: Monthly Production Mix Statistics of Case Study A (Built with data from [10]). 

According to Fig. 2, October presented a large deficit of hydroelectric energy used (about -58.5% in 

relation to the previous year), which correlates the data obtained for precipitation shown in Table 1, which 

we classified the month as extremely dry. Thus, thermal energy was needed to be used more than normal 

(10.5%) in order to compensate for the lack of hydroelectric production that would be expected for October. 

Regarding the energy of the Special Regime Production, there is not a large difference in relation to the 

previous year, but there is an increase in hydroelectric pumping (6.9%), which may be justified by the need 

to recover the average flow rates of rivers. In the case of the month of March, there is a substantial increase 

in water production (155%), which is justified by the fact that is a month where a above precipitation 

occurred that was expected (as shown in the first Table), with energy hydro together with the energy coming 

from the Special Regime were practically able to meet demand / supply demanded by the energetic market, 

so that thermal energy was not so necessary for this month, noting a variation of (-67.5%) compared to the 

previous year. For the energy sources of the Special Regimes, wind energy production contributed the most 

by (52.1%).
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Energy price (€/MWh): 

 

Fig. 39: Average monthly price (€ / MWh) of case study A (Built with data from[11]). 

Regarding the average monthly prices of energy Fig. 3, our cases of studies, and comparing with the data 

obtained so far, we found that the month of March was the lowest month in the average monthly price 

(€/MWh), which could be explained by the fact that in these month the hydroelectric power has been the 

most used since there was enough abundance of this sector, as well as the production of these kind of energy 

are considered the cheaper in the production of electric energy. In turn, the months of October, November 

and December were the most expensive months in which justification will be since there was no available 

hydraulic energy and it was necessary to resort to thermal energy, which energy is more expensive to 

produce energy in order to meet the needs of the electricity market. 

B. Dec 2016 

▪ Precipitation data: 

According to Table 3, our chosen "M" month will also be the month of December for the year 2016. 

When we start executing our method, the month of July will most likely become the "D" variable due to 

the fact of being the month in which the current amount of precipitation is the lowest as shown in Table 3. 

Therefore, the variable "D+1" will be represented by the month of August.  

Table 3: Precipitation values of case B (Built with data [5]). 

Year 2016 

Month 
Actual rainfall  

(mm) 

Average 

precipitation (mm) 
Relationship 

July 2,8 10,3 Lower 

August 3,7 11,6 Lower 

September 18,2 41,8 Lower 

October 64,4 92,5 Lower 

November 98,7 118 Lower 

December 51,3 129,8 Lower 

Year 2017 

January 47,8 126,8 Lower 

February 87,9 112,2 Lower 

It is shown that the month of July assumes the variable “D“ (being less than 40% of the normal value 

for that time of the month), going according to the implemented method. On the other hand, and with the 

course of the method, and knowing that we increased the "M = M+1" function (as we did for the first case) 

to analyze the months following the month defined by the variable "M" the month of February may also 

assume the variable “D”, but in this case to assume as a very rainy month. The month of July 2016, in 

mainland Portugal, was extremely hot and very dry. It should be noted that according to the IPMA data, in 

many regions of the North and Central coast and the Alentejo and Algarve there was no precipitation this 

July. [8] As for February 2017, it was classified as a normal month for the season of the year for 

precipitation and temperature[9].  
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▪ Production Mix Statistics: 

In relation to energy production Fig. 4, we can see that in December 2016, it was verified that a great 

part of the energy was produced through the thermal, about 36.8%, as a result of the little precipitation that 

occurred in this month, even when compared to December 2015 there was an increase in water production, 

the same goes for the month of July 2016. 

 

Fig. 40: Monthly Production Mix Statistics of Case Study B (Built with data [10]). 

As for February 2017, it was verified that there was a 56.3% fall in the production of hydroelectric 

energy, given that in February 2016 it was the 2nd rainiest month of the year, and in counterpart to 

compensate these values there was an increase in more than 100 % in thermal power production in February 

2017 compared to 2016, and a 29% increase in hydroelectric pumping. 

▪  Energy price (€/MWh): 

According to the data of average monthly prices for the years 2016/2017 and 2015/2016 Fig. 5, we can 

verify the highest price for the energy occurred in January 2017, approximately 71,52 €, where much of the 

energy produced was through the Thermal energy. In contrast, in January 2016 a large part of the energy 

produced was through hydropower. 

 

Fig. 41: Average monthly price (€ / MWh) of case study B (Built with data from [11]). 

We can also verify that in the months of July, August and September 2015 the energy value is higher 

compared to the same months of 2016, since a great part of the energy production in the months of 2015 

comes from thermal energy, whereas in the months 2016 already come from water production. We can then 

verify that the price of energy varies with the type of production, thermal or water, and when this same 

production comes from the water, that is when there is more water in the reservoirs also the energy price 

decreases.

 

C. Dec 2016 

▪ Precipitation data: 
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In this case study our chosen month, "M", was the month of December 2015. During this month the 

average value of precipitation was about half of the normal value, as we can see in Table 4. It was verified 

that during the year of 2015, in only two months of the year, the volume of precipitation was higher than 

the monthly average, making this year, a year dry, and in about 6 months of this year the precipitation 

volume was lower by about 50% of the average value [12].   

Table 4: Precipitation values of case C (Built with data from [5]). 

 

Year 2015 

Month 

Actual rainfall 

(mm) 

Average 

precipitation (mm) Relationship 

July 4,1 10,3 Lower 

August 7,1 11,6 Lower 

September 45,4 41,8 Near 

October 118,7 92,5 Higher 

November 46,5 118 Lower 

December 61,1 129,8 Lower 

Year 2016 

January 166,9 126,8 Higher 

When we performed the method considering the month “M” December, our month “D” is July, since it 

was the month with the least precipitation, at the amount of precipitation in July 2015 this value was 4.1 

mm, lower than the average value of 10.3 mm, and month “D+1”, August. January 2016 was characterized 

as a very rainy month with enough wind. As for precipitation, the values in January 2016 were 166.9 mm, 

higher than the average value, being the highest value of the last 15 years. In some days of January, there 

were high values of precipitation in certain regions, mainly north, and strong wind [13]. 

▪ Production Mix Statistics: 

About Production Fig. 6, we can verify that the values of water energy production in both July and 

December 2015 are low and in comparison to previous years, namely 2014, there was a reduction of this 

production in about 56% in December and 17% in the month of July, as we have seen, these months have 

been hot and dry due to the little precipitation we had. On the other hand, thermal energy increased in these 

months, probably to compensate for this reduction in water, and compared to 2014 there was an increase 

of about 40% in July and near 31% in December, as well as pumping, namely in December (48.4%).   

 

Fig. 42: Monthly Production Mix Statistics of Case Study C (Built with data from [10]). 

As for January 2016, the opposite occurs: once it was a very rainy month there was an increase in water 

compared to 2015 by 98.5% and a reduction in thermal energy production by about 15%. This month there 
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was also a 23% increase in hydroelectric pumping. Also, in January there was an increase in energy 

production under a special regime, mainly 33.5% in wind energy production, given that it was considered 

a month with strong wind. [10] 

▪  Energy price (€/MWh): 

 

Fig. 43: Average monthly price (€ / MWh) of case study C (Built with data from [11]). 

According to Fig. 7, we can verify what we have already considered, in which the price of energy will 

vary depending on its type of production, thermal or water, reaching higher prices when thermal energy 

production is higher, as in the case of July 2015, or reaching lower prices as production increases through 

hydropower, as we can verify in January 2016. 

5. Conclusions 

It is verified that in Portugal the hydro production has a very significant weight in the energy production, 

it is concluded through the cases of study that the lack of hydro energy production led to the necessity of 

the use of thermal production plants to compensate the lack of production as a consequence there was a 

high increase in energy prices in the months of the years studied. This variation in hydroelectric production 

is due to periods of drought. The implemented method of study became useful for the analysis of the case 

studies because through the inputs of the assigned variables there was a quick sampling of all the data 

necessary for analysis of the cases, either the precipitation data, the production data by monthly energy and 

monthly market prices. It is noteworthy that this method can be applied to any month of any year. Since 

most of the major rivers that exist in Portugal have their source in Spain, whenever droughts occur the water 

becomes scarce in order to produce enough hydro energy to maintain normal energy prices and not need to 

resort to energy production through fossil fuel power plants. A solution to this type of situation would be 

to use the smaller rivers that have their source in Portugal and which flow into these large rivers, is where 

it would be possible to use a reservoirs using the retention of water in these tributaries, taking into account 

the, so that during these periods of drought we can use this retained water in the tributary rivers to increase 

the main riverbed where the dams are installed for the production of hydroelectric energy. 
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Abstract 

The use of renewable generation and demand response programs become a reality in the nowadays electricity 

markets and distribution networks. An intelligent energy management system is required in all levels of 

electricity supply chain, in order to efficiently profit from the distributed energy sources. However, before the 

implementation of the business models, the mathematical and simulation models should be well surveyed and 

verified. This paper presents a model of low voltage distribution network of a university campus developed in 

MATLAB/Simulink tools. Several types of resource modelings have been used in order to develop a reliable 

distribution network model. In the case study of this paper, the real consumption profiles of the buildings located 

in the university campus are provided to the developed model and the behaviors of the network components are 

surveyed. 

Keywords: demand response programs, low voltage network modeling, microgrids, simulink 

1. Introduction 

Nowadays, the network operators are forced to use efficient solutions for renewable energy sources due 

to the daily increment of energy demand [1]. Demand Response (DR) programs and Distributed Renewable 

Energy resources (DRERs) are two main concepts, which are appeared with the implementation of smart 

grids and microgrids. DR programs can be defined as altering the consumption profile of customers in 

response to the price variations or financial profits paid by the DR managing entity, namely aggregator [2]. 

This means the DR programs would aid the two sides of the network, including demand sides and network 

operators. There are two classifications for the DR programs: price-based and incentive-based [3][4]. 

The demand side customers utilize DR programs for reducing their electricity costs, and the network 

operator employs DR program to reduce the congestion of the grid and reduce the peak consumptions [5]. 

The integration of the DR programs with DRERs is the hot topic of research society since they can provide 

flexibility for the market negotiations [6]. However, the consumers should have enough capacity for 

consumption reduction in order to participate in the DR programs. This means the small and medium 

consumers should be aggregated and participated in the electricity markets as a unique resource [7][8]. 

Therefore, the role of this small and medium consumers should be well tested and validated through several 

models in order to identify future problems [9][10]. 

This paper presents a modeling of low voltage distribution network of a university campus considering 

DR programs and DRERs. The model is implemented in MATLAB/Simulink tools. Three types of loads 
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has been tested in this model: A Series RL load, a Parallel load, and Dynamic load. Through several studies, 

it is found out that dynamic load is the best choice for network modeling of a university campus, somehow 

each building of the university is simulated by a dynamic load block. The model developed in 

MATLAB/Simulink is based on the real architecture of the transmission lines implemented in the area of 

the university, and all power loses, and impedances are considered in the model. In the case study of this 

paper, at first, the behavior of one specific bus in the network is surveyed while several load modelings are 

implemented in order to validate and select the best approach, considering response time and accuracy of 

the simulation. In the second stage, several scenarios investigate the reaction of the entire network in various 

conditions. The real consumption profile of each building is presented to the load model associated with 

that building, and the simulation results regarding the entire network as well as each consumer will be 

surveyed. 

After this section, Section 2 presents the real university network and the developed Simulink model. 

Section 3 focuses on the case study description, and its results are provided in Section 4. Finally, the main 

conclusions of the work are explained in Section 5. 

2. University Campus Modelling 

The low voltage distribution network considered in this paper is related to a university campus in Porto, 

Portugal. This network consists of 21 buses, one bus for each building, connected via underground electrical 

lines with a total length of 3.350 km. There is an MV/LV transformer in BUS 21, which connects the 

campus network to the external supplier with the following features: 15kV / 400V-230V, 2050 kVA. Fig. 

1 illustrates the network architecture indicating the location of the buildings, buses, and transmission lines. 

Also, Table 1 provides the electrical characteristics of the distribution network. 

 

Fig. 44: Internal low voltage distribution network of the university campus. 

Fig. 2 illustrates the setup of the network in the Simulink tool. As it was mentioned, the distribution 

network contains 21 buildings, which each building is modeled as a load. All the loads are connected 

through a branch that has resistance and an inductance value, as shown in Table 1. The three-phase loads 

provide the information regarding the voltages and currents, and therefore, the model would be able to 

calculate the number of power losses in the branches for different buildings of the university.  

The network model is operated as 400 V and 1000 VA at a frequency of 50 Hz. Also, the source of the 

network is modeled as a three-phase source providing 400 V and 1000 VA at 50 Hz, which are based on 

the real data in the current form of the network. Moreover, as it can be seen in Fig. 2, the entire network 

buses are modeled with three-phase loads. BUS #18 that is the most distant bus from the supply, is surveyed 

with two different load models, including a series and a dynamic load. By this way, the most suitable load 

model is determined and used for the entire model. 
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Table 13: Electrical charactriscits of university campus distribution network. 

Line Bus Distance (km) R (p.u) X (p.u) Maximum Power Limit (kVA) 

1 21 – 1 0.04 1.67 × 10-4 2.00 × 10-5 121 

2 21 – 2 0.07 6.96 × 10-5 3.50 × 10-5 276 

3 21 – 3 0.08 2.47 × 10-4 3.50 × 10-5 143 

4 21 – 4 0.135 4.16 × 10-4 5.90 × 10-5 133 

5 21 – 4 0.135 4.16 × 10-4 5.90 × 10-5 133 

6 21 – 5 0.080 1.97 × 10-3 4.00 × 10-5 37 

7 21 – 6 0.085 6.79 × 10-5 3.71 × 10-5 316 

8 21 – 7 0.155 2.26 × 10-3 7.75 × 10-5 52 

9 21 – 8 0.135 2.89 × 10-4 5.90 × 10-5 170 

10 21 – 9 0.170 5.24 × 10-4 7.44 × 10-5 133 

11 21 – 9 0.170 5.24 × 10-4 7.44 × 10-5 133 

12 21 – 10 0.175 1.37 × 10-4 8.75 × 10-5 251 

13 21 – 11 0.115 3.54 × 10-4 5.03 × 10-5 143 

14 21 – 12 0.195 2.39 × 10-4 9.75 × 10-5 240 

15 21 – 12 0.195 2.39 × 10-4 9.75 × 10-5 240 

16 21 – 13 0.105 1.28 × 10-4 5.25 × 10-5 238 

17 21 – 14 0.215 1.98 × 10-3 1.08 × 10-4 69 

18 21 – 15 0.245 2.25 × 10-3 1.23 × 10-4 69 

19 21 – 16 0.255 7.86 × 10-4 1.12 × 10-4 133 

20 21 – 17 0.240 1.88 × 10-4 1.20 × 10-4 251 

21 21 – 18 0.085 1.24 × 10-3 4.25 × 10-5 52 

22 21 – 19 0.155 6.47 × 10-4 7.75 × 10-5 121 

23 21 – 20 0.115 1.06 × 10-3 5.75 × 10-5 78 

As can be seen in Fig. 2, each load of the network is modeled by a group of three blocks. The blocks are 

a three-phase series branch, a three-phase measurement block, and three-phase series load. Also, the three-

phase source located in BUS #21 supplies the loads and a three-phase V-I measurement block measures the 

main power input of the whole network. 

 

Fig. 2: Simulink model of the distribution network of the university campus. 

BUS 18 
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3. Case Studies 

In this section, several case studies are implemented in order to test and validate the proposed network 

modeling. For this purpose, the behavior of the network will be surveyed in different conditions considering 

various rates of consumption.  

At the first stage, the focus is given to BUS #18, which is the most distant bus from the power source. 

Three types of load modelings are considered for BUS #18 in order to survey the behavior of this specific 

bus. In the first test, a dynamic load is considered for BUS #18 while the rest of the loads are modeled as 

series loads consuming 100 kW, and in the second and third tests, a series and a parallel load is associated 

respectively for BUS #18 while the conditions are as same as the first test. The results of these three 

experiments would be illustrated and surveyed in the next section. 

The second part of the case study is related to validate the performance of the developed model, while 

all the loads are modeled by dynamic loads. Three scenarios are considered for this section: 

1. Winter profiles: the real consumption profile of each building on a winter day is considered 

for the network model; 

2. Summer profiles: the real consumption profile of university on a summer day is considered; 

3. Off-peak: the profiles would be as same as scenario 1, however, it is considered that the three 

most consuming buildings are not participating in the consumption profiles, since it is a public 

holiday and there are no classes in the faculty.  

Fig. 3 shows the real consumption profiles of each bus (each building) considered for three scenarios. 

All the charts are stacked lines, which means the last line presents the total consumption of the network.  

 

Fig. 3: The real consumption profiles of university considered for the case study in three scenarios: (A) winter 

profiles, (B) summer profiles, (C) off-peak. 

As Fig. 3 shows, the profiles are for one day with a 1-hour time interval. The simulation is set to run 

each hour period values in a fixed-step size of 30 seconds. Therefore, the outcomes of simulations would 

be obtained in 12 minutes after it starts running. 

4. Results 

The present section shows the results obtained from the simulation described in the previous section. 

The first gained results are related to the performance of BUS #18 with three different load models. Fig. 4 

shows the behavior of these load models in the first second of the simulation while there is 100 kW active 

power and 40 kVAR reactive power demand in BUS #18. 
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Fig. 45: Behaviour of BUS #18 in the first second of the simulation with three different loads modeling: (A) Dynamic 

load, (B) Series load, (C) Parallel load. 

As Fig. 4 shows, the response of the dynamic load is slower to reach to its permanent state comparing 

to the other two load models that have similar behaviors. In the dynamic load, it takes 0.15 seconds for the 

reaching to the permanent state while the other two load models immediately reached the desired rate. 

Furthermore, Table 2 presents the power consumptions of loads and branches in BUS #18 at the end of the 

simulation. As it can be observed from Table 2, there are some internal losses in the series and parallel load 

model somehow, they do not allow the consumption rate to be as same as the desired rate. Also, the losses 

in the branch of the dynamic load are slightly higher than the rest of the loads. 

Table 2: Power measurement regarding BUS #18. 

 
Measured Power Branch Power Total Consumption 

P (W) Q (VAR) P (W) Q (VAR) P (W) Q (VAR) 

Dynamic Load 100000 40000 145,4 0 100145,4 40000 

Series Load 99641,805 39857,541 144,5 0 99786,3 39857,54 

Parallel Load 99642,372 39856,817 144,5 0 99786,87 39856,82 

Another important difference between these models is to set the desired power rate. In Series and Parallel 

loads, the power consumption rate can only be set before starting the simulation, however, in the dynamic 

load model it can be changed throughout the simulation. These differences between the load modelings, 

especially the dynamic load, are due to the nature of the type of loads and blocks that are being used for the 

testing in the Simulink tool. 

Regarding the results of the whole network, Fig. 5 shows the overall consumption of the network 

simulated by the developed model for the university campus distribution network in three scenarios 

mentioned before. In all three scenarios, the loads are modeled using dynamic load, since its outputs are 

closer to a realistic load and also it allows to change the power input while the simulation is running. 

The results shown in Fig. 5, are for 12 minutes in total, which means each 30 seconds a new power 

consumption rate is transmitted to all loads and therefore, they react and try to reach the favorable 

consumption rate. Also, in the same figure, while the consumption rate is changed, there is a peak in active 

power, which is due to the nature of the dynamic load, as it was discussed in Fig. 4. 

Based on the results shown on this section, it can be concluded that the developed Simulink model has 

adequate and acceptable performance in simulation, and the obtained results validated the functionalities 

of that in different conditions with the various rate of consumption. 



Demand response approaches for real-time renewable energy integration 

 

92 

 

Fig. 5: Overall consumption of university campus network simulated by the developed Simulink model: (A) winter 

profiles, (B) summer profiles, (C) off-peak. 

5. Conclusions 

This paper presented a MATLAB/Simulink model of a low voltage distribution network of a university 

campus. Several load modelings have been surveyed and their performances in various conditions were 

demonstrated. The real consumption profiles of the university campus were used for the case studies 

through different scenarios. In the model, each building of the university was considered as a dynamic load 

for simulating the consumption rate. The results of the simulation show that three-phase dynamic load is 

the best approach for modeling the consumption of each building since it reacts closer to a realistic load. 

Moreover, the dynamic load model allows the user to modify and change the rate of consumption while the 

simulation is running, which this is not possible to implement using other types of load modelings.   
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Abstract 

The unplanned power outages have occurred for all of us, and we know that from the household inhabitant’s 

standpoint, power outage even for a short period of time is not pleasant. This matter is also true for the 

residential buildings that are far from the main cities, namely in the countryside or in a small village, and they 

may have a power outage for a long-term even with a small problem in the power transmission lines. Therefore, 

an energy solution module is required in order to prevent power outage for household inhabitants. In this paper, 

an off-grid energy sustainability solution for residential buildings will be represented by considering several 

small-scale generators. The module consists of several microgeneration units and energy storage systems for 

maintaining the energy balance. Also, a software-based control unit is used for controlling the production. The 

main focus is given to survey the performance of the wind turbine utilized in this energy module. The behavior 

of an induction machine and a permanent magnet machine will be investigated in two levels of simulation and 

emulation in order to realize the best solution for the wind turbine of presented energy module. 

Keywords: hybrid energy solution, power outages, real-time simulation, wind turbine 

1. Introduction 

The hierarchical structure of the power distribution networks is being updated and move towards the 

smart grids, and microgrid paradigms [1]. Smart grid concepts provide several flexibilities based on 

resource management somehow the network operator would be able to control the rate of consumption and 

generation [2]. On the other hand, the daily increment of electricity demand leads to reduce the method of 

generation using fossil fuels [3] and optimally utilize sustainable and renewable energy resources, 

especially Photovoltaic (PV) and wind turbines [4].  

The use of the new concepts of the power system, such as Distributed Renewable Energy Resources 

(DRERs) and Demand Response (DR) programs, by the small and medium players, make the network 

management more difficult and unstable [5]. This fact could lead to having an unplanned power outage. 

The power outages have occurred for everyone all around the world, which is very unpleasant for all people, 

especially household inhabitants. Furthermore, the residential buildings out of the main cities, such as in 

countryside or in a small village, can suffer from this issue since they may have a power outage for a long-
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term with a small technical problem in the distribution network. The Energy Storage System (ESS) can be 

considered as a solution to overcome this problem. However, all ESS has a limit capacity and it can only 

supply the electricity demand for a short period of time. Also, an ESS with adequate capacity for storing 

energy is not affordable for the residential buildings in the countryside and small villages. This means an 

energy solution module is essential to be developed and utilized in those areas in order to prevent the power 

outages, especially for household inhabitants.  

This paper presents an off-grid energy sustainability solution for residential buildings, which employs 

several small scales generators. This energy module includes several microgeneration units, such as PV 

panels, a wind turbine, and an emergency generator. Moreover, two ESS are utilized in the module for 

keeping the energy balance, and a software-based control unit is used for controlling the rate of production. 

This module so-called HibridGER and a prototype has been implemented by the GPRI research group in 

Brazil (www.labteca.ecolabore.net). The main focus of this paper is given to study several simulation and 

emulation models for the wind turbine that can be utilized in the HibridGER. MATLAB/Simulink tools are 

used for the simulation of the models. Also, a real-time simulator (OP5600), and a 1.2 kW laboratory wind 

turbine emulator will be employed as Hardware-In-the-Loop (HIL) in order to compare the obtained results 

from the simulation and emulation.  

After this introductory section, the HibridGER module is described in Section 2. Section 3 presents the 

simulation and emulation wind turbine models implemented by Simulink and OP5600, and their results are 

demonstrated in Section 4. Finally, Section 5 clarifies the main conclusions of the work. 

2. HibridGER Module 

As it was mentioned in the previous section, the HibridGER module is related to an off-grid energy 

solution, which employs several generation resources, including renewable sources, as well as ESS. The 

renewable sources consist of PV panels with 350 W generation capacity and a wind turbine with a 1000 W 

generation rate. Furthermore, two 12 V batteries with a total capacity of 85 A/h, are connected to the 

module. Besides these, a generator with 2000 W capacity supports the module in critical moments. Fig. 1 

illustrates an overview of the presented module. 

 

Fig. 46: Architecture of HibridGER Module. 

The central control unit of this module is responsible for several functionalities. Several energy meters 

and relays are embedded in the module that are all connected to a software-based controller (Arduino® - 

www.arduino.cc) in the central control unit. Energy meters are responsible to monitor the energy generation 

and the output of the module, and the relay is accountable for connecting or disconnecting the sources of 

the module.  

http://www.labteca.ecolabore.net/
http://www.arduino.cc/


Demand response approaches for real-time renewable energy integration 

 

96 

The software-based controller intelligently decides about the operation of the sources based on an 

internal algorithm. The priority of the system is to supply the demand from the renewable sources, and 

while there is no demand, the batteries would be charged from those sources. If the electricity demand is 

out of the capacity of renewable sources, the controller connects the batteries in the power circuit to feed 

the loads. In the last stage, if the renewable sources and batteries were not adequate for supplying the 

demand, the emergency generator would be connected to the power circuit in order to supply the loads. 

3. Wind Turbine Models 

This section surveys the functionalities of the wind turbine used in HibridGER by providing two types 

of machines in order to identify the most efficient solution. Therefore, this section is divided into two 

subsections, which the first one describes the performance of an induction generator, and the second 

subsection focuses on a permanent magnet generator.  

3.1 Wind Turbine Models 

The induction machine considered in this section is related to a laboratory 1.2 kW wind turbine emulator. 

In this emulator, an inductive three-phase generator has been coupled with a three-phase asynchronous 

motor with variable speed. In fact, the motor emulates the blades of the wind turbine. Therefore, the operator 

can simulate the wind speed by controlling the speed of the motor. While the emulator is turned ON, the 

generator is connected to the power network in order to inject the produced power. Consequently, the 

emulator should follow the frequency of the grid (normally 50 Hz). If the speed of the generator goes above 

the frequency of the grid, the generator injects the produced power to the grid. However, if the speed of the 

generator is not adequate, it would not be able to produce energy. 

In order to control and manage this emulator by the real-time simulator (OP5600), the analog input 

terminal of the speed control unit has been integrated into the analog output board of OP5600. Then, the 

wind speed data have been converted from km/h to a value in the range of 0 to +10V in order to provide it 

to the speed control unit. The computations of this conversion have been implemented in Simulink. Also, 

for monitoring the real-time generation of the emulator, an energy meter has been embedded in the machine, 

which is connected to the OP5600 through Ethernet interface, with MODBUS TCP/IP protocol. More 

information about this process is available on [6][7]. Fig. 2 illustrates these configurations.  

 

Fig. 2: Real-time simulation architecture for wind turbine emulator. 

As can be seen in Fig. 2, the OP5600 would be able to control and monitor the emulator in real-time. In 

other words, OP5600 can send the desired wind speed data to the emulator and receives a real-time amount 

of generation. By this way, the performance of the induction generator could be surveyed, as it will be 

demonstrated in the next section.    

3.2 Permanent Magnet Machine 

The permanent magnet machine is another target of this paper in order to investigate its performance 

while it is used as a wind turbine. Since there was no available laboratory equipment for this machine, it is 

decided to develop a MATLAB/Simulink model, as Fig. 3 shows. 
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In this model, the permanent magnet machine is configured with a three-phase connection while the 

stator phase resistance is set as 0.0018 ohms and stator phase inductance is set to 8.5e-3. Also, the voltage 

rate is configured as 400V line to line, and the torque of the machine is controlled externally from the other 

blocks. The model is shown in Fig. 3 is embedded in OP5600 and the results and its performance will be 

shown in the next section. 

 

Fig. 3: Simulink model of a permanent magnet wind turbine. 

4. Results 

This section demonstrates the results obtained from the simulation and emulation models described in 

the previous section. At first, the results of wind turbine emulator controlled by OP5600 are proposed, and 

then the permanent magnet behaviors are discussed. Fig. 4 shows an experiment implemented by the 1.2 

kW wind turbine emulator. 

  

Fig. 4: Comparison of real and simulated wind generation profiles by wind turbine emulator. 

The results shown in Fig. 4 are related to a test that has been performed by OP5600 and 1.2 kW wind 

turbine emulator. In this test, the wind speed has been increased from 0 to 50 km/h and vice versa. The blue 

line in Fig. 4 is the desired power rate and the green line is the output generation of wind turbine emulator. 

Moreover, Fig. 5 illustrates the results of another test implemented by the wind turbine emulator. In this 

second test, the wind speed data has been acquired from [8], which is the actual wind speed data provided 

to the emulator. As can be seen in Fig. 5, the set points are the favorable values that have been requested 

from the wind turbine to be emulated. Consequently, the emulator produces power and transmits the actual 

measurements of active power generation (green line in Fig. 5) to the OP5600. By this way, the system is 

able to emulate the wind generation profile based on the electrical grid conditions, such as voltage 

variations. Regarding the permanent magnet machine, Fig. 6 illustrates the obtained results from the 

Simulink model. 
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Fig. 5: Real-time results of wind turbine emulator. 

 

Fig. 6: The results of simulation for the permanent magnet generator. 

The results shown in Fig. 6 are gained while the wind speed is set to 7 m/s, generator speed is 1.2 p.u, 

and 30 degrees in the pitch angle.  

5. Conclusions 

This paper proposed an off-grid energy solution for residential buildings in order to overcome the power 

outages. This energy module consists of renewable energy sources, energy storage systems, and an 

emergency generator. Two models, including an induction machine and a permanent magnet machine, were 

presented for the wind turbine employed in this energy module. All the models have been simulated and 

emulated by laboratory equipment and a real-time simulator, and the obtained results are presented. The 

outcomes of the paper show that the induction machine is more acceptable and suitable to be used as a wind 

turbine in the proposed hybrid energy solution. 
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